Optimal. Leaf size=24 \[ 4+2 \left (e^{2^{1+x}}+16 e^{6-2 x}\right )+x^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 22, normalized size of antiderivative = 0.92, number of steps used = 5, number of rules used = 3, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.107, Rules used = {2194, 2282, 12} \begin {gather*} x^2+2 e^{2^{x+1}}+32 e^{6-2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x^2-64 \int e^{6-2 x} \, dx+\log (2) \int 2^{2+x} e^{2^{1+x}} \, dx\\ &=32 e^{6-2 x}+x^2+\operatorname {Subst}\left (\int 4 e^{2 x} \, dx,x,2^x\right )\\ &=32 e^{6-2 x}+x^2+4 \operatorname {Subst}\left (\int e^{2 x} \, dx,x,2^x\right )\\ &=2 e^{2^{1+x}}+32 e^{6-2 x}+x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 22, normalized size = 0.92 \begin {gather*} 2 e^{2^{1+x}}+32 e^{6-2 x}+x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 20, normalized size = 0.83 \begin {gather*} x^{2} + 2 \, e^{\left (2 \cdot 2^{x}\right )} + 32 \, e^{\left (-2 \, x + 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 20, normalized size = 0.83 \begin {gather*} x^{2} + 2 \, e^{\left (2 \cdot 2^{x}\right )} + 32 \, e^{\left (-2 \, x + 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 21, normalized size = 0.88
method | result | size |
risch | \(x^{2}+32 \,{\mathrm e}^{6-2 x}+2 \,{\mathrm e}^{2 \,2^{x}}\) | \(21\) |
default | \(x^{2}+32 \,{\mathrm e}^{6-2 x}+2 \,{\mathrm e}^{2 \,{\mathrm e}^{x \ln \relax (2)}}\) | \(25\) |
norman | \(x^{2}+32 \,{\mathrm e}^{6-2 x}+2 \,{\mathrm e}^{2 \,{\mathrm e}^{x \ln \relax (2)}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 26, normalized size = 1.08 \begin {gather*} x^{2} + 2^{\frac {2^{x + 1}}{\log \relax (2)} + 1} + 32 \, e^{\left (-2 \, x + 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 20, normalized size = 0.83 \begin {gather*} 2\,{\mathrm {e}}^{2\,2^x}+32\,{\mathrm {e}}^{-2\,x}\,{\mathrm {e}}^6+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 22, normalized size = 0.92 \begin {gather*} x^{2} + 32 e^{6 - 2 x} + 2 e^{2 e^{x \log {\relax (2 )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________