Optimal. Leaf size=22 \[ -x^3+\frac {e^3}{1-x+17 x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 44, normalized size of antiderivative = 2.00, number of steps used = 5, number of rules used = 4, integrand size = 58, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {1680, 12, 1814, 1586} \begin {gather*} -\left (x-\frac {1}{34}\right )^3-\frac {3}{34} \left (x-\frac {1}{34}\right )^2-\frac {3 x}{1156}+\frac {68 e^3}{1156 \left (x-\frac {1}{34}\right )^2+67} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1586
Rule 1680
Rule 1814
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {-13467-915756 \left (1+\frac {2672672 e^3}{13467}\right ) x-16032564 x^2-31600416 x^3-541216080 x^4-272612544 x^5-4634413248 x^6}{1156 \left (67+1156 x^2\right )^2} \, dx,x,-\frac {1}{34}+x\right )\\ &=\frac {\operatorname {Subst}\left (\int \frac {-13467-915756 \left (1+\frac {2672672 e^3}{13467}\right ) x-16032564 x^2-31600416 x^3-541216080 x^4-272612544 x^5-4634413248 x^6}{\left (67+1156 x^2\right )^2} \, dx,x,-\frac {1}{34}+x\right )}{1156}\\ &=\frac {68 e^3}{67+(-1+34 x)^2}-\frac {\operatorname {Subst}\left (\int \frac {26934+1831512 x+31600416 x^2+31600416 x^3+537207072 x^4}{67+1156 x^2} \, dx,x,-\frac {1}{34}+x\right )}{154904}\\ &=\frac {68 e^3}{67+(-1+34 x)^2}-\frac {\operatorname {Subst}\left (\int \left (402+27336 x+464712 x^2\right ) \, dx,x,-\frac {1}{34}+x\right )}{154904}\\ &=-\frac {3 (1-34 x)^2}{39304}-\left (-\frac {1}{34}+x\right )^3-\frac {3 x}{1156}+\frac {68 e^3}{67+(-1+34 x)^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 21, normalized size = 0.95 \begin {gather*} -x^3-\frac {e^3}{-1+x-17 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 32, normalized size = 1.45 \begin {gather*} -\frac {17 \, x^{5} - x^{4} + x^{3} - e^{3}}{17 \, x^{2} - x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 21, normalized size = 0.95 \begin {gather*} -x^{3} + \frac {e^{3}}{17 \, x^{2} - x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 21, normalized size = 0.95
method | result | size |
risch | \(\frac {{\mathrm e}^{3}}{17 x^{2}-x +1}-x^{3}\) | \(21\) |
default | \(\frac {{\mathrm e}^{3}}{17 x^{2}-x +1}-x^{3}\) | \(22\) |
gosper | \(\frac {-17 x^{5}+x^{4}-x^{3}+{\mathrm e}^{3}}{17 x^{2}-x +1}\) | \(30\) |
norman | \(\frac {-17 x^{5}+x^{4}-x^{3}+{\mathrm e}^{3}}{17 x^{2}-x +1}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 21, normalized size = 0.95 \begin {gather*} -x^{3} + \frac {e^{3}}{17 \, x^{2} - x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 21, normalized size = 0.95 \begin {gather*} \frac {{\mathrm {e}}^3}{17\,x^2-x+1}-x^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 14, normalized size = 0.64 \begin {gather*} - x^{3} + \frac {e^{3}}{17 x^{2} - x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________