Optimal. Leaf size=26 \[ -16+e^{\frac {4 (1+x)^2}{\left (e^{x^2} (-1+x)-x\right )^2}} \]
________________________________________________________________________________________
Rubi [F] time = 10.75, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {4+8 x+4 x^2}{x^2+e^{x^2} \left (2 x-2 x^2\right )+e^{2 x^2} \left (1-2 x+x^2\right )}\right ) \left (8+8 x+e^{x^2} \left (-16+16 x^2-16 x^3-16 x^4\right )\right )}{-x^3+e^{2 x^2} \left (-3 x+6 x^2-3 x^3\right )+e^{3 x^2} \left (-1+3 x-3 x^2+x^3\right )+e^{x^2} \left (-3 x^2+3 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}} (1+x) \left (1-2 e^{x^2} \left (1-x+x^3\right )\right )}{\left (e^{x^2} (-1+x)-x\right )^3} \, dx\\ &=8 \int \frac {e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}} (1+x) \left (1-2 e^{x^2} \left (1-x+x^3\right )\right )}{\left (e^{x^2} (-1+x)-x\right )^3} \, dx\\ &=8 \int \left (-\frac {e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}} (1+x)^2 \left (1-2 x^2+2 x^3\right )}{(-1+x) \left (-e^{x^2}-x+e^{x^2} x\right )^3}-\frac {2 e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}} \left (1-x^2+x^3+x^4\right )}{(-1+x) \left (-e^{x^2}-x+e^{x^2} x\right )^2}\right ) \, dx\\ &=-\left (8 \int \frac {e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}} (1+x)^2 \left (1-2 x^2+2 x^3\right )}{(-1+x) \left (-e^{x^2}-x+e^{x^2} x\right )^3} \, dx\right )-16 \int \frac {e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}} \left (1-x^2+x^3+x^4\right )}{(-1+x) \left (-e^{x^2}-x+e^{x^2} x\right )^2} \, dx\\ &=-\left (8 \int \left (\frac {3 e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}}}{\left (-e^{x^2}-x+e^{x^2} x\right )^3}+\frac {4 e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}}}{(-1+x) \left (-e^{x^2}-x+e^{x^2} x\right )^3}+\frac {e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}} x}{\left (-e^{x^2}-x+e^{x^2} x\right )^3}+\frac {2 e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}} x^2}{\left (-e^{x^2}-x+e^{x^2} x\right )^3}+\frac {4 e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}} x^3}{\left (-e^{x^2}-x+e^{x^2} x\right )^3}+\frac {2 e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}} x^4}{\left (-e^{x^2}-x+e^{x^2} x\right )^3}\right ) \, dx\right )-16 \int \left (\frac {e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}}}{\left (-e^{x^2}-x+e^{x^2} x\right )^2}+\frac {2 e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}}}{(-1+x) \left (-e^{x^2}-x+e^{x^2} x\right )^2}+\frac {e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}} x}{\left (-e^{x^2}-x+e^{x^2} x\right )^2}+\frac {2 e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}} x^2}{\left (-e^{x^2}-x+e^{x^2} x\right )^2}+\frac {e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}} x^3}{\left (-e^{x^2}-x+e^{x^2} x\right )^2}\right ) \, dx\\ &=-\left (8 \int \frac {e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}} x}{\left (-e^{x^2}-x+e^{x^2} x\right )^3} \, dx\right )-16 \int \frac {e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}} x^2}{\left (-e^{x^2}-x+e^{x^2} x\right )^3} \, dx-16 \int \frac {e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}} x^4}{\left (-e^{x^2}-x+e^{x^2} x\right )^3} \, dx-16 \int \frac {e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}}}{\left (-e^{x^2}-x+e^{x^2} x\right )^2} \, dx-16 \int \frac {e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}} x}{\left (-e^{x^2}-x+e^{x^2} x\right )^2} \, dx-16 \int \frac {e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}} x^3}{\left (-e^{x^2}-x+e^{x^2} x\right )^2} \, dx-24 \int \frac {e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}}}{\left (-e^{x^2}-x+e^{x^2} x\right )^3} \, dx-32 \int \frac {e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}}}{(-1+x) \left (-e^{x^2}-x+e^{x^2} x\right )^3} \, dx-32 \int \frac {e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}} x^3}{\left (-e^{x^2}-x+e^{x^2} x\right )^3} \, dx-32 \int \frac {e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}}}{(-1+x) \left (-e^{x^2}-x+e^{x^2} x\right )^2} \, dx-32 \int \frac {e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}} x^2}{\left (-e^{x^2}-x+e^{x^2} x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.78, size = 23, normalized size = 0.88 \begin {gather*} e^{\frac {4 (1+x)^2}{\left (-e^{x^2} (-1+x)+x\right )^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.11, size = 45, normalized size = 1.73 \begin {gather*} e^{\left (\frac {4 \, {\left (x^{2} + 2 \, x + 1\right )}}{x^{2} + {\left (x^{2} - 2 \, x + 1\right )} e^{\left (2 \, x^{2}\right )} - 2 \, {\left (x^{2} - x\right )} e^{\left (x^{2}\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {8 \, {\left (2 \, {\left (x^{4} + x^{3} - x^{2} + 1\right )} e^{\left (x^{2}\right )} - x - 1\right )} e^{\left (\frac {4 \, {\left (x^{2} + 2 \, x + 1\right )}}{x^{2} + {\left (x^{2} - 2 \, x + 1\right )} e^{\left (2 \, x^{2}\right )} - 2 \, {\left (x^{2} - x\right )} e^{\left (x^{2}\right )}}\right )}}{x^{3} - {\left (x^{3} - 3 \, x^{2} + 3 \, x - 1\right )} e^{\left (3 \, x^{2}\right )} + 3 \, {\left (x^{3} - 2 \, x^{2} + x\right )} e^{\left (2 \, x^{2}\right )} - 3 \, {\left (x^{3} - x^{2}\right )} e^{\left (x^{2}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.17, size = 56, normalized size = 2.15
method | result | size |
risch | \({\mathrm e}^{\frac {4 \left (x +1\right )^{2}}{-2 x^{2} {\mathrm e}^{x^{2}}+{\mathrm e}^{2 x^{2}} x^{2}+2 \,{\mathrm e}^{x^{2}} x -2 x \,{\mathrm e}^{2 x^{2}}+x^{2}+{\mathrm e}^{2 x^{2}}}}\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.01, size = 267, normalized size = 10.27 \begin {gather*} e^{\left (\frac {4 \, e^{\left (2 \, x^{2}\right )}}{x^{2} + {\left (x^{2} - 2 \, x + 1\right )} e^{\left (4 \, x^{2}\right )} - 2 \, {\left (2 \, x^{2} - 3 \, x + 1\right )} e^{\left (3 \, x^{2}\right )} + {\left (6 \, x^{2} - 6 \, x + 1\right )} e^{\left (2 \, x^{2}\right )} - 2 \, {\left (2 \, x^{2} - x\right )} e^{\left (x^{2}\right )}} - \frac {8 \, e^{\left (x^{2}\right )}}{x^{2} - {\left (x^{2} - 2 \, x + 1\right )} e^{\left (3 \, x^{2}\right )} + {\left (3 \, x^{2} - 4 \, x + 1\right )} e^{\left (2 \, x^{2}\right )} - {\left (3 \, x^{2} - 2 \, x\right )} e^{\left (x^{2}\right )}} + \frac {8 \, e^{\left (x^{2}\right )}}{{\left (x - 1\right )} e^{\left (3 \, x^{2}\right )} - {\left (3 \, x - 2\right )} e^{\left (2 \, x^{2}\right )} + {\left (3 \, x - 1\right )} e^{\left (x^{2}\right )} - x} + \frac {4}{x^{2} + {\left (x^{2} - 2 \, x + 1\right )} e^{\left (2 \, x^{2}\right )} - 2 \, {\left (x^{2} - x\right )} e^{\left (x^{2}\right )}} + \frac {8}{{\left (x - 1\right )} e^{\left (2 \, x^{2}\right )} - {\left (2 \, x - 1\right )} e^{\left (x^{2}\right )} + x} + \frac {4}{e^{\left (2 \, x^{2}\right )} - 2 \, e^{\left (x^{2}\right )} + 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.42, size = 155, normalized size = 5.96 \begin {gather*} {\mathrm {e}}^{\frac {8\,x}{{\mathrm {e}}^{2\,x^2}+2\,x\,{\mathrm {e}}^{x^2}-2\,x\,{\mathrm {e}}^{2\,x^2}-2\,x^2\,{\mathrm {e}}^{x^2}+x^2\,{\mathrm {e}}^{2\,x^2}+x^2}}\,{\mathrm {e}}^{\frac {4\,x^2}{{\mathrm {e}}^{2\,x^2}+2\,x\,{\mathrm {e}}^{x^2}-2\,x\,{\mathrm {e}}^{2\,x^2}-2\,x^2\,{\mathrm {e}}^{x^2}+x^2\,{\mathrm {e}}^{2\,x^2}+x^2}}\,{\mathrm {e}}^{\frac {4}{{\mathrm {e}}^{2\,x^2}+2\,x\,{\mathrm {e}}^{x^2}-2\,x\,{\mathrm {e}}^{2\,x^2}-2\,x^2\,{\mathrm {e}}^{x^2}+x^2\,{\mathrm {e}}^{2\,x^2}+x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.95, size = 42, normalized size = 1.62 \begin {gather*} e^{\frac {4 x^{2} + 8 x + 4}{x^{2} + \left (- 2 x^{2} + 2 x\right ) e^{x^{2}} + \left (x^{2} - 2 x + 1\right ) e^{2 x^{2}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________