Optimal. Leaf size=30 \[ 1+5^x \left (e^{-x^2} x\right )^x+x \left (-x^2+2 \log (\log (4))\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \left (-3 x^2+5^x \left (e^{-x^2} x\right )^x \left (1-2 x^2+\log \left (5 e^{-x^2} x\right )\right )+2 \log (\log (4))\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-x^3+2 x \log (\log (4))+\int 5^x \left (e^{-x^2} x\right )^x \left (1-2 x^2+\log \left (5 e^{-x^2} x\right )\right ) \, dx\\ &=-x^3+2 x \log (\log (4))+\int \left (5^x \left (e^{-x^2} x\right )^x-2\ 5^x x^2 \left (e^{-x^2} x\right )^x+5^x \left (e^{-x^2} x\right )^x \log \left (5 e^{-x^2} x\right )\right ) \, dx\\ &=-x^3+2 x \log (\log (4))-2 \int 5^x x^2 \left (e^{-x^2} x\right )^x \, dx+\int 5^x \left (e^{-x^2} x\right )^x \, dx+\int 5^x \left (e^{-x^2} x\right )^x \log \left (5 e^{-x^2} x\right ) \, dx\\ &=-x^3+2 x \log (\log (4))-2 \int 5^x x^2 \left (e^{-x^2} x\right )^x \, dx+\log \left (5 e^{-x^2} x\right ) \int 5^x \left (e^{-x^2} x\right )^x \, dx+\int 5^x \left (e^{-x^2} x\right )^x \, dx-\int \frac {\left (1-2 x^2\right ) \int 5^x \left (e^{-x^2} x\right )^x \, dx}{x} \, dx\\ &=-x^3+2 x \log (\log (4))-2 \int 5^x x^2 \left (e^{-x^2} x\right )^x \, dx+\log \left (5 e^{-x^2} x\right ) \int 5^x \left (e^{-x^2} x\right )^x \, dx+\int 5^x \left (e^{-x^2} x\right )^x \, dx-\int \left (\frac {\int 5^x \left (e^{-x^2} x\right )^x \, dx}{x}-2 x \int 5^x \left (e^{-x^2} x\right )^x \, dx\right ) \, dx\\ &=-x^3+2 x \log (\log (4))-2 \int 5^x x^2 \left (e^{-x^2} x\right )^x \, dx+2 \int x \int 5^x \left (e^{-x^2} x\right )^x \, dx \, dx+\log \left (5 e^{-x^2} x\right ) \int 5^x \left (e^{-x^2} x\right )^x \, dx+\int 5^x \left (e^{-x^2} x\right )^x \, dx-\int \frac {\int 5^x \left (e^{-x^2} x\right )^x \, dx}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.49, size = 0, normalized size = 0.00 \begin {gather*} \int \left (-3 x^2+5^x \left (e^{-x^2} x\right )^x \left (1-2 x^2+\log \left (5 e^{-x^2} x\right )\right )+2 \log (\log (4))\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 26, normalized size = 0.87 \begin {gather*} -x^{3} + x \log \left (4 \, \log \relax (2)^{2}\right ) + \left (5 \, x e^{\left (-x^{2}\right )}\right )^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 28, normalized size = 0.93 \begin {gather*} -x^{3} + x \log \left (4 \, \log \relax (2)^{2}\right ) + e^{\left (-x^{3} + x \log \left (5 \, x\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.16, size = 134, normalized size = 4.47
method | result | size |
risch | \({\mathrm e}^{\frac {x \left (i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x^{2}}\right )^{2}-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-x^{2}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x^{2}}\right )-i \pi \mathrm {csgn}\left (i x \,{\mathrm e}^{-x^{2}}\right )^{3}+i \pi \mathrm {csgn}\left (i x \,{\mathrm e}^{-x^{2}}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{-x^{2}}\right )+2 \ln \relax (x )+2 \ln \relax (5)-2 \ln \left ({\mathrm e}^{x^{2}}\right )\right )}{2}}+2 x \ln \relax (2)+2 x \ln \left (\ln \relax (2)\right )-x^{3}\) | \(134\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 30, normalized size = 1.00 \begin {gather*} -x^{3} + x \log \left (4 \, \log \relax (2)^{2}\right ) + e^{\left (-x^{3} + x \log \relax (5) + x \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.34, size = 29, normalized size = 0.97 \begin {gather*} 2\,x\,\ln \relax (2)+{\mathrm {e}}^{-x^3}\,{\left (5\,x\right )}^x+2\,x\,\ln \left (\ln \relax (2)\right )-x^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 156.87, size = 26, normalized size = 0.87 \begin {gather*} - x^{3} + x \log {\left (4 \log {\relax (2 )}^{2} \right )} + e^{x \log {\left (5 x e^{- x^{2}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________