Optimal. Leaf size=21 \[ 3 e^{2+e^{\frac {e^x+2 x}{x}}} \log (2) \]
________________________________________________________________________________________
Rubi [F] time = 0.66, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2+e^{\frac {e^x+2 x}{x}}+x+\frac {e^x+2 x}{x}} (-3+3 x) \log (2)}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log (2) \int \frac {e^{2+e^{\frac {e^x+2 x}{x}}+x+\frac {e^x+2 x}{x}} (-3+3 x)}{x^2} \, dx\\ &=\log (2) \int \left (-\frac {3 e^{2+e^{\frac {e^x+2 x}{x}}+x+\frac {e^x+2 x}{x}}}{x^2}+\frac {3 e^{2+e^{\frac {e^x+2 x}{x}}+x+\frac {e^x+2 x}{x}}}{x}\right ) \, dx\\ &=-\left ((3 \log (2)) \int \frac {e^{2+e^{\frac {e^x+2 x}{x}}+x+\frac {e^x+2 x}{x}}}{x^2} \, dx\right )+(3 \log (2)) \int \frac {e^{2+e^{\frac {e^x+2 x}{x}}+x+\frac {e^x+2 x}{x}}}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 19, normalized size = 0.90 \begin {gather*} 3 e^{2+e^{2+\frac {e^x}{x}}} \log (2) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.93, size = 52, normalized size = 2.48 \begin {gather*} 3 \, x e^{\left (-x + \frac {x^{2} + x e^{\left (\frac {2 \, x + e^{x}}{x}\right )} - x \log \relax (x) + 4 \, x + e^{x}}{x} - \frac {2 \, x + e^{x}}{x}\right )} \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 16, normalized size = 0.76 \begin {gather*} 3 \, e^{\left (e^{\left (\frac {e^{x}}{x} + 2\right )} + 2\right )} \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 19, normalized size = 0.90
method | result | size |
risch | \(3 \ln \relax (2) {\mathrm e}^{{\mathrm e}^{\frac {{\mathrm e}^{x}+2 x}{x}}+2}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.59, size = 16, normalized size = 0.76 \begin {gather*} 3 \, e^{\left (e^{\left (\frac {e^{x}}{x} + 2\right )} + 2\right )} \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.38, size = 17, normalized size = 0.81 \begin {gather*} 3\,{\mathrm {e}}^2\,{\mathrm {e}}^{{\mathrm {e}}^2\,{\mathrm {e}}^{\frac {{\mathrm {e}}^x}{x}}}\,\ln \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 17, normalized size = 0.81 \begin {gather*} 3 e^{e^{\frac {2 x + e^{x}}{x}} + 2} \log {\relax (2 )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________