Optimal. Leaf size=28 \[ \frac {e^{2+x}+2 x}{-2+e^{e^x+(-1+x) x}+x+\log (5)} \]
________________________________________________________________________________________
Rubi [F] time = 20.18, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4+e^{e^x-x+x^2} \left (2-e^{2+2 x}+e^x \left (e^2 (2-2 x)-2 x\right )+2 x-4 x^2\right )+2 \log (5)+e^x \left (e^2 (-3+x)+e^2 \log (5)\right )}{4+e^{2 e^x-2 x+2 x^2}-4 x+x^2+(-4+2 x) \log (5)+\log ^2(5)+e^{e^x-x+x^2} (-4+2 x+2 \log (5))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 x} \left (e^{e^x-x+x^2} \left (2-e^{2+2 x}+e^x \left (e^2 (2-2 x)-2 x\right )+2 x-4 x^2\right )-4 \left (1-\frac {\log (5)}{2}\right )+e^x \left (e^2 (-3+x)+e^2 \log (5)\right )\right )}{\left (e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )\right )^2} \, dx\\ &=\int \left (\frac {e^x \left (2+2 e^{2+x}-e^{2+2 x}+2 x-2 e^x \left (1+e^2\right ) x-4 x^2\right )}{e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )}+\frac {e^{2 x} \left (e^{2+x}+2 x\right ) \left (1+e^x x+2 x^2-2 e^x \left (1-\frac {\log (5)}{2}\right )-5 x \left (1-\frac {2 \log (5)}{5}\right )-\log (5)\right )}{\left (e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )\right )^2}\right ) \, dx\\ &=\int \frac {e^x \left (2+2 e^{2+x}-e^{2+2 x}+2 x-2 e^x \left (1+e^2\right ) x-4 x^2\right )}{e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )} \, dx+\int \frac {e^{2 x} \left (e^{2+x}+2 x\right ) \left (1+e^x x+2 x^2-2 e^x \left (1-\frac {\log (5)}{2}\right )-5 x \left (1-\frac {2 \log (5)}{5}\right )-\log (5)\right )}{\left (e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )\right )^2} \, dx\\ &=\int \left (\frac {2 e^x}{e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )}+\frac {2 e^{2+2 x}}{e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )}+\frac {2 e^x x}{e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )}+\frac {2 e^{2 x} \left (-1-e^2\right ) x}{e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )}+\frac {e^{2+3 x}}{-e^{e^x+x^2}-e^x x+2 e^x \left (1-\frac {\log (5)}{2}\right )}+\frac {4 e^x x^2}{-e^{e^x+x^2}-e^x x+2 e^x \left (1-\frac {\log (5)}{2}\right )}\right ) \, dx+\int \frac {e^{2 x} \left (e^{2+x}+2 x\right ) \left (1+2 x^2-\log (5)+e^x (-2+x+\log (5))+x (-5+\log (25))\right )}{\left (e^{e^x+x^2}+e^x (-2+x+\log (5))\right )^2} \, dx\\ &=2 \int \frac {e^x}{e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )} \, dx+2 \int \frac {e^{2+2 x}}{e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )} \, dx+2 \int \frac {e^x x}{e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )} \, dx+4 \int \frac {e^x x^2}{-e^{e^x+x^2}-e^x x+2 e^x \left (1-\frac {\log (5)}{2}\right )} \, dx-\left (2 \left (1+e^2\right )\right ) \int \frac {e^{2 x} x}{e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )} \, dx+\int \frac {e^{2+3 x}}{-e^{e^x+x^2}-e^x x+2 e^x \left (1-\frac {\log (5)}{2}\right )} \, dx+\int \left (\frac {e^{2+4 x} x}{\left (e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )\right )^2}+\frac {2 e^{3 x} \left (1+e^2\right ) x^2}{\left (e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )\right )^2}+\frac {4 e^{2 x} x^3}{\left (e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )\right )^2}+\frac {e^{2+3 x} (1-\log (5))}{\left (e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )\right )^2}+\frac {2 e^{2 x} x (1-\log (5))}{\left (e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )\right )^2}-\frac {2 e^{2+4 x} \left (1-\frac {\log (5)}{2}\right )}{\left (e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )\right )^2}-\frac {4 e^{3 x} x \left (1-\frac {1}{2} \log (5) \left (1+e^2 \left (1-\frac {5}{\log (25)}\right )\right )\right )}{\left (e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )\right )^2}+\frac {2 e^{2 x} x^2 (-5+\log (25))}{\left (e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )\right )^2}\right ) \, dx\\ &=2 \int \frac {e^x}{e^{e^x+x^2}+e^x (-2+x+\log (5))} \, dx+2 \int \frac {e^{2+2 x}}{e^{e^x+x^2}+e^x (-2+x+\log (5))} \, dx+2 \int \frac {e^x x}{e^{e^x+x^2}+e^x (-2+x+\log (5))} \, dx+4 \int \frac {e^{2 x} x^3}{\left (e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )\right )^2} \, dx+4 \int \frac {e^x x^2}{-e^{e^x+x^2}-e^x (-2+x+\log (5))} \, dx+\left (2 \left (1+e^2\right )\right ) \int \frac {e^{3 x} x^2}{\left (e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )\right )^2} \, dx-\left (2 \left (1+e^2\right )\right ) \int \frac {e^{2 x} x}{e^{e^x+x^2}+e^x (-2+x+\log (5))} \, dx+(1-\log (5)) \int \frac {e^{2+3 x}}{\left (e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )\right )^2} \, dx+(2 (1-\log (5))) \int \frac {e^{2 x} x}{\left (e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )\right )^2} \, dx-(2-\log (5)) \int \frac {e^{2+4 x}}{\left (e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )\right )^2} \, dx-\left (2 \left (2-\log (5) \left (1+e^2 \left (1-\frac {5}{\log (25)}\right )\right )\right )\right ) \int \frac {e^{3 x} x}{\left (e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )\right )^2} \, dx+(2 (-5+\log (25))) \int \frac {e^{2 x} x^2}{\left (e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )\right )^2} \, dx+\int \frac {e^{2+4 x} x}{\left (e^{e^x+x^2}+e^x x-2 e^x \left (1-\frac {\log (5)}{2}\right )\right )^2} \, dx+\int \frac {e^{2+3 x}}{-e^{e^x+x^2}-e^x (-2+x+\log (5))} \, dx\\ &=2 \int \frac {e^x}{e^{e^x+x^2}+e^x (-2+x+\log (5))} \, dx+2 \int \frac {e^{2+2 x}}{e^{e^x+x^2}+e^x (-2+x+\log (5))} \, dx+2 \int \frac {e^x x}{e^{e^x+x^2}+e^x (-2+x+\log (5))} \, dx+4 \int \frac {e^x x^2}{-e^{e^x+x^2}-e^x (-2+x+\log (5))} \, dx+4 \int \frac {e^{2 x} x^3}{\left (e^{e^x+x^2}+e^x (-2+x+\log (5))\right )^2} \, dx+\left (2 \left (1+e^2\right )\right ) \int \frac {e^{3 x} x^2}{\left (e^{e^x+x^2}+e^x (-2+x+\log (5))\right )^2} \, dx-\left (2 \left (1+e^2\right )\right ) \int \frac {e^{2 x} x}{e^{e^x+x^2}+e^x (-2+x+\log (5))} \, dx+(1-\log (5)) \int \frac {e^{2+3 x}}{\left (e^{e^x+x^2}+e^x (-2+x+\log (5))\right )^2} \, dx+(2 (1-\log (5))) \int \frac {e^{2 x} x}{\left (e^{e^x+x^2}+e^x (-2+x+\log (5))\right )^2} \, dx-(2-\log (5)) \int \frac {e^{2+4 x}}{\left (e^{e^x+x^2}+e^x (-2+x+\log (5))\right )^2} \, dx-\left (2 \left (2-\log (5) \left (1+e^2 \left (1-\frac {5}{\log (25)}\right )\right )\right )\right ) \int \frac {e^{3 x} x}{\left (e^{e^x+x^2}+e^x (-2+x+\log (5))\right )^2} \, dx+(2 (-5+\log (25))) \int \frac {e^{2 x} x^2}{\left (e^{e^x+x^2}+e^x (-2+x+\log (5))\right )^2} \, dx+\int \frac {e^{2+3 x}}{-e^{e^x+x^2}-e^x (-2+x+\log (5))} \, dx+\int \frac {e^{2+4 x} x}{\left (e^{e^x+x^2}+e^x (-2+x+\log (5))\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 34, normalized size = 1.21 \begin {gather*} \frac {e^x \left (e^{2+x}+2 x\right )}{e^{e^x+x^2}+e^x (-2+x+\log (5))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 26, normalized size = 0.93 \begin {gather*} \frac {2 \, x + e^{\left (x + 2\right )}}{x + e^{\left (x^{2} - x + e^{x}\right )} + \log \relax (5) - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.51, size = 989, normalized size = 35.32 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.31, size = 27, normalized size = 0.96
method | result | size |
risch | \(\frac {{\mathrm e}^{2+x}+2 x}{x -2+\ln \relax (5)+{\mathrm e}^{x^{2}+{\mathrm e}^{x}-x}}\) | \(27\) |
norman | \(\frac {-2 \,{\mathrm e}^{x^{2}+{\mathrm e}^{x}-x}+{\mathrm e}^{2} {\mathrm e}^{x}-2 \ln \relax (5)+4}{x -2+\ln \relax (5)+{\mathrm e}^{x^{2}+{\mathrm e}^{x}-x}}\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.65, size = 31, normalized size = 1.11 \begin {gather*} \frac {2 \, x e^{x} + e^{\left (2 \, x + 2\right )}}{{\left (x + \log \relax (5) - 2\right )} e^{x} + e^{\left (x^{2} + e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {2\,\ln \relax (5)-{\mathrm {e}}^{{\mathrm {e}}^x-x+x^2}\,\left ({\mathrm {e}}^{2\,x+2}-2\,x+{\mathrm {e}}^x\,\left (2\,x+{\mathrm {e}}^2\,\left (2\,x-2\right )\right )+4\,x^2-2\right )+{\mathrm {e}}^x\,\left ({\mathrm {e}}^2\,\ln \relax (5)+{\mathrm {e}}^2\,\left (x-3\right )\right )-4}{{\mathrm {e}}^{2\,{\mathrm {e}}^x-2\,x+2\,x^2}-4\,x+\ln \relax (5)\,\left (2\,x-4\right )+{\mathrm {e}}^{{\mathrm {e}}^x-x+x^2}\,\left (2\,x+2\,\ln \relax (5)-4\right )+{\ln \relax (5)}^2+x^2+4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 26, normalized size = 0.93 \begin {gather*} \frac {2 x + e^{2} e^{x}}{x + e^{x^{2} - x + e^{x}} - 2 + \log {\relax (5 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________