Optimal. Leaf size=25 \[ e^{-3-e^x} \left (4 x-\frac {x \log \left (x^2\right )}{\log (2)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.45, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-3-e^x} \left (-2+4 \log (2)-4 e^x x \log (2)+\left (-1+e^x x\right ) \log \left (x^2\right )\right )}{\log (2)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int e^{-3-e^x} \left (-2+4 \log (2)-4 e^x x \log (2)+\left (-1+e^x x\right ) \log \left (x^2\right )\right ) \, dx}{\log (2)}\\ &=\frac {\int e^{-3-e^x} \left (-4 e^x x \log (2)-2 (1-\log (4))+\left (-1+e^x x\right ) \log \left (x^2\right )\right ) \, dx}{\log (2)}\\ &=\frac {\int \left (-4 e^{-3-e^x+x} x \log (2)-2 e^{-3-e^x} (1-\log (4))+e^{-3-e^x} \left (-1+e^x x\right ) \log \left (x^2\right )\right ) \, dx}{\log (2)}\\ &=-\left (4 \int e^{-3-e^x+x} x \, dx\right )+\frac {\int e^{-3-e^x} \left (-1+e^x x\right ) \log \left (x^2\right ) \, dx}{\log (2)}-\frac {(2 (1-\log (4))) \int e^{-3-e^x} \, dx}{\log (2)}\\ &=-\frac {e^{-3-e^x} x \log \left (x^2\right )}{\log (2)}-4 \int e^{-3-e^x+x} x \, dx-\frac {\int -2 e^{-3-e^x} \, dx}{\log (2)}-\frac {(2 (1-\log (4))) \operatorname {Subst}\left (\int \frac {e^{-3-x}}{x} \, dx,x,e^x\right )}{\log (2)}\\ &=-\frac {2 \text {Ei}\left (-e^x\right ) (1-\log (4))}{e^3 \log (2)}-\frac {e^{-3-e^x} x \log \left (x^2\right )}{\log (2)}-4 \int e^{-3-e^x+x} x \, dx+\frac {2 \int e^{-3-e^x} \, dx}{\log (2)}\\ &=-\frac {2 \text {Ei}\left (-e^x\right ) (1-\log (4))}{e^3 \log (2)}-\frac {e^{-3-e^x} x \log \left (x^2\right )}{\log (2)}-4 \int e^{-3-e^x+x} x \, dx+\frac {2 \operatorname {Subst}\left (\int \frac {e^{-3-x}}{x} \, dx,x,e^x\right )}{\log (2)}\\ &=\frac {2 \text {Ei}\left (-e^x\right )}{e^3 \log (2)}-\frac {2 \text {Ei}\left (-e^x\right ) (1-\log (4))}{e^3 \log (2)}-\frac {e^{-3-e^x} x \log \left (x^2\right )}{\log (2)}-4 \int e^{-3-e^x+x} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.28, size = 60, normalized size = 2.40 \begin {gather*} -4 \left (-e^{-3-e^x} x+\frac {\text {Ei}\left (-e^x\right )}{e^3}\right )+\frac {\frac {\text {Ei}\left (-e^x\right ) \log (16)}{e^3}-e^{-3-e^x} x \log \left (x^2\right )}{\log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.25, size = 25, normalized size = 1.00 \begin {gather*} \frac {{\left (4 \, x \log \relax (2) - x \log \left (x^{2}\right )\right )} e^{\left (-e^{x} - 3\right )}}{\log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.39, size = 38, normalized size = 1.52 \begin {gather*} \frac {{\left (4 \, x e^{\left (x - e^{x}\right )} \log \relax (2) - x e^{\left (x - e^{x}\right )} \log \left (x^{2}\right )\right )} e^{\left (-x - 3\right )}}{\log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 24, normalized size = 0.96
method | result | size |
norman | \(\left (4 x -\frac {x \ln \left (x^{2}\right )}{\ln \relax (2)}\right ) {\mathrm e}^{-{\mathrm e}^{x}-3}\) | \(24\) |
default | \(\frac {\left (\left (4 \ln \relax (2)-\ln \left (x^{2}\right )+2 \ln \relax (x )\right ) x -2 x \ln \relax (x )\right ) {\mathrm e}^{-{\mathrm e}^{x}-3}}{\ln \relax (2)}\) | \(36\) |
risch | \(\frac {\left (\frac {i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )}{2}-i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\frac {i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3}}{2}+4 x \ln \relax (2)-2 x \ln \relax (x )\right ) {\mathrm e}^{-{\mathrm e}^{x}-3}}{\ln \relax (2)}\) | \(76\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {2 \, {\left (-{\left (2 \, \log \relax (2) - 1\right )} {\rm Ei}\left (-e^{x}\right ) e^{\left (-3\right )} + 2 \, {\rm Ei}\left (-e^{x}\right ) e^{\left (-3\right )} \log \relax (2) - {\rm Ei}\left (-e^{x}\right ) e^{\left (-3\right )} + {\left (2 \, x \log \relax (2) - x \log \relax (x)\right )} e^{\left (-e^{x} - 3\right )}\right )}}{\log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^{-{\mathrm {e}}^x-3}\,\left (4\,\ln \relax (2)+\ln \left (x^2\right )\,\left (x\,{\mathrm {e}}^x-1\right )-4\,x\,{\mathrm {e}}^x\,\ln \relax (2)-2\right )}{\ln \relax (2)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.27, size = 24, normalized size = 0.96 \begin {gather*} \frac {\left (- x \log {\left (x^{2} \right )} + 4 x \log {\relax (2 )}\right ) e^{- e^{x} - 3}}{\log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________