Optimal. Leaf size=21 \[ \frac {1}{3} x \left (-x+\frac {x}{\log ^4\left (\frac {2}{-3+x}\right )}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.56, antiderivative size = 262, normalized size of antiderivative = 12.48, number of steps used = 44, number of rules used = 16, integrand size = 62, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.258, Rules used = {6688, 12, 14, 2411, 2353, 2297, 2299, 2178, 2302, 30, 2306, 2310, 2400, 2399, 2389, 2390} \begin {gather*} -\frac {x^2}{3}+\frac {(3-x)^2}{3 \log ^4\left (-\frac {2}{3-x}\right )}-\frac {2 (3-x)}{\log ^4\left (-\frac {2}{3-x}\right )}+\frac {3}{\log ^4\left (-\frac {2}{3-x}\right )}-\frac {2 (3-x)^2}{9 \log ^3\left (-\frac {2}{3-x}\right )}-\frac {2 x (3-x)}{9 \log ^3\left (-\frac {2}{3-x}\right )}+\frac {2 (3-x)}{3 \log ^3\left (-\frac {2}{3-x}\right )}+\frac {2 (3-x)^2}{9 \log ^2\left (-\frac {2}{3-x}\right )}+\frac {2 x (3-x)}{9 \log ^2\left (-\frac {2}{3-x}\right )}-\frac {2 (3-x)}{3 \log ^2\left (-\frac {2}{3-x}\right )}-\frac {4 (3-x)^2}{9 \log \left (-\frac {2}{3-x}\right )}-\frac {4 x (3-x)}{9 \log \left (-\frac {2}{3-x}\right )}+\frac {4 (3-x)}{3 \log \left (-\frac {2}{3-x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 30
Rule 2178
Rule 2297
Rule 2299
Rule 2302
Rule 2306
Rule 2310
Rule 2353
Rule 2389
Rule 2390
Rule 2399
Rule 2400
Rule 2411
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2}{3} x \left (-1+\frac {2 x}{(-3+x) \log ^5\left (\frac {2}{-3+x}\right )}+\frac {1}{\log ^4\left (\frac {2}{-3+x}\right )}\right ) \, dx\\ &=\frac {2}{3} \int x \left (-1+\frac {2 x}{(-3+x) \log ^5\left (\frac {2}{-3+x}\right )}+\frac {1}{\log ^4\left (\frac {2}{-3+x}\right )}\right ) \, dx\\ &=\frac {2}{3} \int \left (-x+\frac {2 x^2}{(-3+x) \log ^5\left (\frac {2}{-3+x}\right )}+\frac {x}{\log ^4\left (\frac {2}{-3+x}\right )}\right ) \, dx\\ &=-\frac {x^2}{3}+\frac {2}{3} \int \frac {x}{\log ^4\left (\frac {2}{-3+x}\right )} \, dx+\frac {4}{3} \int \frac {x^2}{(-3+x) \log ^5\left (\frac {2}{-3+x}\right )} \, dx\\ &=-\frac {x^2}{3}-\frac {2 (3-x) x}{9 \log ^3\left (-\frac {2}{3-x}\right )}-\frac {4}{9} \int \frac {x}{\log ^3\left (\frac {2}{-3+x}\right )} \, dx+\frac {2}{3} \int \frac {1}{\log ^3\left (\frac {2}{-3+x}\right )} \, dx+\frac {4}{3} \operatorname {Subst}\left (\int \frac {(3+x)^2}{x \log ^5\left (\frac {2}{x}\right )} \, dx,x,-3+x\right )\\ &=-\frac {x^2}{3}-\frac {2 (3-x) x}{9 \log ^3\left (-\frac {2}{3-x}\right )}+\frac {2 (3-x) x}{9 \log ^2\left (-\frac {2}{3-x}\right )}+\frac {4}{9} \int \frac {x}{\log ^2\left (\frac {2}{-3+x}\right )} \, dx-\frac {2}{3} \int \frac {1}{\log ^2\left (\frac {2}{-3+x}\right )} \, dx+\frac {2}{3} \operatorname {Subst}\left (\int \frac {1}{\log ^3\left (\frac {2}{x}\right )} \, dx,x,-3+x\right )+\frac {4}{3} \operatorname {Subst}\left (\int \left (\frac {6}{\log ^5\left (\frac {2}{x}\right )}+\frac {9}{x \log ^5\left (\frac {2}{x}\right )}+\frac {x}{\log ^5\left (\frac {2}{x}\right )}\right ) \, dx,x,-3+x\right )\\ &=-\frac {x^2}{3}-\frac {2 (3-x) x}{9 \log ^3\left (-\frac {2}{3-x}\right )}-\frac {3-x}{3 \log ^2\left (-\frac {2}{3-x}\right )}+\frac {2 (3-x) x}{9 \log ^2\left (-\frac {2}{3-x}\right )}-\frac {4 (3-x) x}{9 \log \left (-\frac {2}{3-x}\right )}-\frac {1}{3} \operatorname {Subst}\left (\int \frac {1}{\log ^2\left (\frac {2}{x}\right )} \, dx,x,-3+x\right )-\frac {2}{3} \operatorname {Subst}\left (\int \frac {1}{\log ^2\left (\frac {2}{x}\right )} \, dx,x,-3+x\right )-\frac {8}{9} \int \frac {x}{\log \left (\frac {2}{-3+x}\right )} \, dx+\frac {4}{3} \int \frac {1}{\log \left (\frac {2}{-3+x}\right )} \, dx+\frac {4}{3} \operatorname {Subst}\left (\int \frac {x}{\log ^5\left (\frac {2}{x}\right )} \, dx,x,-3+x\right )+8 \operatorname {Subst}\left (\int \frac {1}{\log ^5\left (\frac {2}{x}\right )} \, dx,x,-3+x\right )+12 \operatorname {Subst}\left (\int \frac {1}{x \log ^5\left (\frac {2}{x}\right )} \, dx,x,-3+x\right )\\ &=-\frac {x^2}{3}-\frac {2 (3-x)}{\log ^4\left (-\frac {2}{3-x}\right )}+\frac {(3-x)^2}{3 \log ^4\left (-\frac {2}{3-x}\right )}-\frac {2 (3-x) x}{9 \log ^3\left (-\frac {2}{3-x}\right )}-\frac {3-x}{3 \log ^2\left (-\frac {2}{3-x}\right )}+\frac {2 (3-x) x}{9 \log ^2\left (-\frac {2}{3-x}\right )}+\frac {3-x}{\log \left (-\frac {2}{3-x}\right )}-\frac {4 (3-x) x}{9 \log \left (-\frac {2}{3-x}\right )}+\frac {1}{3} \operatorname {Subst}\left (\int \frac {1}{\log \left (\frac {2}{x}\right )} \, dx,x,-3+x\right )-\frac {2}{3} \operatorname {Subst}\left (\int \frac {x}{\log ^4\left (\frac {2}{x}\right )} \, dx,x,-3+x\right )+\frac {2}{3} \operatorname {Subst}\left (\int \frac {1}{\log \left (\frac {2}{x}\right )} \, dx,x,-3+x\right )-\frac {8}{9} \int \left (\frac {3}{\log \left (\frac {2}{-3+x}\right )}+\frac {-3+x}{\log \left (\frac {2}{-3+x}\right )}\right ) \, dx+\frac {4}{3} \operatorname {Subst}\left (\int \frac {1}{\log \left (\frac {2}{x}\right )} \, dx,x,-3+x\right )-2 \operatorname {Subst}\left (\int \frac {1}{\log ^4\left (\frac {2}{x}\right )} \, dx,x,-3+x\right )-12 \operatorname {Subst}\left (\int \frac {1}{x^5} \, dx,x,\log \left (\frac {2}{-3+x}\right )\right )\\ &=-\frac {x^2}{3}+\frac {3}{\log ^4\left (-\frac {2}{3-x}\right )}-\frac {2 (3-x)}{\log ^4\left (-\frac {2}{3-x}\right )}+\frac {(3-x)^2}{3 \log ^4\left (-\frac {2}{3-x}\right )}+\frac {2 (3-x)}{3 \log ^3\left (-\frac {2}{3-x}\right )}-\frac {2 (3-x)^2}{9 \log ^3\left (-\frac {2}{3-x}\right )}-\frac {2 (3-x) x}{9 \log ^3\left (-\frac {2}{3-x}\right )}-\frac {3-x}{3 \log ^2\left (-\frac {2}{3-x}\right )}+\frac {2 (3-x) x}{9 \log ^2\left (-\frac {2}{3-x}\right )}+\frac {3-x}{\log \left (-\frac {2}{3-x}\right )}-\frac {4 (3-x) x}{9 \log \left (-\frac {2}{3-x}\right )}+\frac {4}{9} \operatorname {Subst}\left (\int \frac {x}{\log ^3\left (\frac {2}{x}\right )} \, dx,x,-3+x\right )-\frac {2}{3} \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log \left (\frac {2}{-3+x}\right )\right )+\frac {2}{3} \operatorname {Subst}\left (\int \frac {1}{\log ^3\left (\frac {2}{x}\right )} \, dx,x,-3+x\right )-\frac {8}{9} \int \frac {-3+x}{\log \left (\frac {2}{-3+x}\right )} \, dx-\frac {4}{3} \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log \left (\frac {2}{-3+x}\right )\right )-\frac {8}{3} \int \frac {1}{\log \left (\frac {2}{-3+x}\right )} \, dx-\frac {8}{3} \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log \left (\frac {2}{-3+x}\right )\right )\\ &=-\frac {x^2}{3}-\frac {14}{3} \text {Ei}\left (-\log \left (-\frac {2}{3-x}\right )\right )+\frac {3}{\log ^4\left (-\frac {2}{3-x}\right )}-\frac {2 (3-x)}{\log ^4\left (-\frac {2}{3-x}\right )}+\frac {(3-x)^2}{3 \log ^4\left (-\frac {2}{3-x}\right )}+\frac {2 (3-x)}{3 \log ^3\left (-\frac {2}{3-x}\right )}-\frac {2 (3-x)^2}{9 \log ^3\left (-\frac {2}{3-x}\right )}-\frac {2 (3-x) x}{9 \log ^3\left (-\frac {2}{3-x}\right )}-\frac {2 (3-x)}{3 \log ^2\left (-\frac {2}{3-x}\right )}+\frac {2 (3-x)^2}{9 \log ^2\left (-\frac {2}{3-x}\right )}+\frac {2 (3-x) x}{9 \log ^2\left (-\frac {2}{3-x}\right )}+\frac {3-x}{\log \left (-\frac {2}{3-x}\right )}-\frac {4 (3-x) x}{9 \log \left (-\frac {2}{3-x}\right )}-\frac {1}{3} \operatorname {Subst}\left (\int \frac {1}{\log ^2\left (\frac {2}{x}\right )} \, dx,x,-3+x\right )-\frac {4}{9} \operatorname {Subst}\left (\int \frac {x}{\log ^2\left (\frac {2}{x}\right )} \, dx,x,-3+x\right )-\frac {8}{9} \operatorname {Subst}\left (\int \frac {x}{\log \left (\frac {2}{x}\right )} \, dx,x,-3+x\right )-\frac {8}{3} \operatorname {Subst}\left (\int \frac {1}{\log \left (\frac {2}{x}\right )} \, dx,x,-3+x\right )\\ &=-\frac {x^2}{3}-\frac {14}{3} \text {Ei}\left (-\log \left (-\frac {2}{3-x}\right )\right )+\frac {3}{\log ^4\left (-\frac {2}{3-x}\right )}-\frac {2 (3-x)}{\log ^4\left (-\frac {2}{3-x}\right )}+\frac {(3-x)^2}{3 \log ^4\left (-\frac {2}{3-x}\right )}+\frac {2 (3-x)}{3 \log ^3\left (-\frac {2}{3-x}\right )}-\frac {2 (3-x)^2}{9 \log ^3\left (-\frac {2}{3-x}\right )}-\frac {2 (3-x) x}{9 \log ^3\left (-\frac {2}{3-x}\right )}-\frac {2 (3-x)}{3 \log ^2\left (-\frac {2}{3-x}\right )}+\frac {2 (3-x)^2}{9 \log ^2\left (-\frac {2}{3-x}\right )}+\frac {2 (3-x) x}{9 \log ^2\left (-\frac {2}{3-x}\right )}+\frac {4 (3-x)}{3 \log \left (-\frac {2}{3-x}\right )}-\frac {4 (3-x)^2}{9 \log \left (-\frac {2}{3-x}\right )}-\frac {4 (3-x) x}{9 \log \left (-\frac {2}{3-x}\right )}+\frac {1}{3} \operatorname {Subst}\left (\int \frac {1}{\log \left (\frac {2}{x}\right )} \, dx,x,-3+x\right )+\frac {8}{9} \operatorname {Subst}\left (\int \frac {x}{\log \left (\frac {2}{x}\right )} \, dx,x,-3+x\right )+\frac {32}{9} \operatorname {Subst}\left (\int \frac {e^{-2 x}}{x} \, dx,x,\log \left (\frac {2}{-3+x}\right )\right )+\frac {16}{3} \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log \left (\frac {2}{-3+x}\right )\right )\\ &=-\frac {x^2}{3}+\frac {32}{9} \text {Ei}\left (-2 \log \left (-\frac {2}{3-x}\right )\right )+\frac {2}{3} \text {Ei}\left (-\log \left (-\frac {2}{3-x}\right )\right )+\frac {3}{\log ^4\left (-\frac {2}{3-x}\right )}-\frac {2 (3-x)}{\log ^4\left (-\frac {2}{3-x}\right )}+\frac {(3-x)^2}{3 \log ^4\left (-\frac {2}{3-x}\right )}+\frac {2 (3-x)}{3 \log ^3\left (-\frac {2}{3-x}\right )}-\frac {2 (3-x)^2}{9 \log ^3\left (-\frac {2}{3-x}\right )}-\frac {2 (3-x) x}{9 \log ^3\left (-\frac {2}{3-x}\right )}-\frac {2 (3-x)}{3 \log ^2\left (-\frac {2}{3-x}\right )}+\frac {2 (3-x)^2}{9 \log ^2\left (-\frac {2}{3-x}\right )}+\frac {2 (3-x) x}{9 \log ^2\left (-\frac {2}{3-x}\right )}+\frac {4 (3-x)}{3 \log \left (-\frac {2}{3-x}\right )}-\frac {4 (3-x)^2}{9 \log \left (-\frac {2}{3-x}\right )}-\frac {4 (3-x) x}{9 \log \left (-\frac {2}{3-x}\right )}-\frac {2}{3} \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log \left (\frac {2}{-3+x}\right )\right )-\frac {32}{9} \operatorname {Subst}\left (\int \frac {e^{-2 x}}{x} \, dx,x,\log \left (\frac {2}{-3+x}\right )\right )\\ &=-\frac {x^2}{3}+\frac {3}{\log ^4\left (-\frac {2}{3-x}\right )}-\frac {2 (3-x)}{\log ^4\left (-\frac {2}{3-x}\right )}+\frac {(3-x)^2}{3 \log ^4\left (-\frac {2}{3-x}\right )}+\frac {2 (3-x)}{3 \log ^3\left (-\frac {2}{3-x}\right )}-\frac {2 (3-x)^2}{9 \log ^3\left (-\frac {2}{3-x}\right )}-\frac {2 (3-x) x}{9 \log ^3\left (-\frac {2}{3-x}\right )}-\frac {2 (3-x)}{3 \log ^2\left (-\frac {2}{3-x}\right )}+\frac {2 (3-x)^2}{9 \log ^2\left (-\frac {2}{3-x}\right )}+\frac {2 (3-x) x}{9 \log ^2\left (-\frac {2}{3-x}\right )}+\frac {4 (3-x)}{3 \log \left (-\frac {2}{3-x}\right )}-\frac {4 (3-x)^2}{9 \log \left (-\frac {2}{3-x}\right )}-\frac {4 (3-x) x}{9 \log \left (-\frac {2}{3-x}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 25, normalized size = 1.19 \begin {gather*} \frac {1}{3} \left (9-x^2+\frac {x^2}{\log ^4\left (\frac {2}{-3+x}\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 32, normalized size = 1.52 \begin {gather*} -\frac {x^{2} \log \left (\frac {2}{x - 3}\right )^{4} - x^{2}}{3 \, \log \left (\frac {2}{x - 3}\right )^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 50, normalized size = 2.38 \begin {gather*} -\frac {1}{3} \, {\left (x - 3\right )}^{2} {\left (\frac {6}{x - 3} + 1\right )} + \frac {{\left (x - 3\right )}^{2} {\left (\frac {6}{x - 3} + \frac {9}{{\left (x - 3\right )}^{2}} + 1\right )}}{3 \, \log \left (\frac {2}{x - 3}\right )^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.39, size = 22, normalized size = 1.05
method | result | size |
risch | \(-\frac {x^{2}}{3}+\frac {x^{2}}{3 \ln \left (\frac {2}{x -3}\right )^{4}}\) | \(22\) |
norman | \(\frac {\frac {x^{2}}{3}-\frac {x^{2} \ln \left (\frac {2}{x -3}\right )^{4}}{3}}{\ln \left (\frac {2}{x -3}\right )^{4}}\) | \(33\) |
derivativedivides | \(-\frac {\left (x -3\right )^{2}}{3}+\frac {2 x -6}{\ln \left (\frac {2}{x -3}\right )^{4}}+\frac {\left (x -3\right )^{2}}{3 \ln \left (\frac {2}{x -3}\right )^{4}}-2 x +6+\frac {3}{\ln \left (\frac {2}{x -3}\right )^{4}}\) | \(57\) |
default | \(-\frac {\left (x -3\right )^{2}}{3}+\frac {2 x -6}{\ln \left (\frac {2}{x -3}\right )^{4}}+\frac {\left (x -3\right )^{2}}{3 \ln \left (\frac {2}{x -3}\right )^{4}}-2 x +6+\frac {3}{\ln \left (\frac {2}{x -3}\right )^{4}}\) | \(57\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 111, normalized size = 5.29 \begin {gather*} \frac {4 \, x^{2} \log \relax (2)^{3} \log \left (x - 3\right ) - 6 \, x^{2} \log \relax (2)^{2} \log \left (x - 3\right )^{2} + 4 \, x^{2} \log \relax (2) \log \left (x - 3\right )^{3} - x^{2} \log \left (x - 3\right )^{4} - {\left (\log \relax (2)^{4} - 1\right )} x^{2}}{3 \, {\left (\log \relax (2)^{4} - 4 \, \log \relax (2)^{3} \log \left (x - 3\right ) + 6 \, \log \relax (2)^{2} \log \left (x - 3\right )^{2} - 4 \, \log \relax (2) \log \left (x - 3\right )^{3} + \log \left (x - 3\right )^{4}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.33, size = 21, normalized size = 1.00 \begin {gather*} \frac {x^2}{3\,{\ln \left (\frac {2}{x-3}\right )}^4}-\frac {x^2}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 17, normalized size = 0.81 \begin {gather*} - \frac {x^{2}}{3} + \frac {x^{2}}{3 \log {\left (\frac {2}{x - 3} \right )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________