Optimal. Leaf size=20 \[ 5+\frac {1}{2} \left (\frac {5}{2}-x\right ) x+\frac {x}{\log (x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 19, normalized size of antiderivative = 0.95, number of steps used = 6, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {12, 6742, 2297, 2298} \begin {gather*} -\frac {x^2}{2}+\frac {5 x}{4}+\frac {x}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2297
Rule 2298
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {-4+4 \log (x)+(5-4 x) \log ^2(x)}{\log ^2(x)} \, dx\\ &=\frac {1}{4} \int \left (5-4 x-\frac {4}{\log ^2(x)}+\frac {4}{\log (x)}\right ) \, dx\\ &=\frac {5 x}{4}-\frac {x^2}{2}-\int \frac {1}{\log ^2(x)} \, dx+\int \frac {1}{\log (x)} \, dx\\ &=\frac {5 x}{4}-\frac {x^2}{2}+\frac {x}{\log (x)}+\text {li}(x)-\int \frac {1}{\log (x)} \, dx\\ &=\frac {5 x}{4}-\frac {x^2}{2}+\frac {x}{\log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 19, normalized size = 0.95 \begin {gather*} \frac {5 x}{4}-\frac {x^2}{2}+\frac {x}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.03, size = 22, normalized size = 1.10 \begin {gather*} -\frac {{\left (2 \, x^{2} - 5 \, x\right )} \log \relax (x) - 4 \, x}{4 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 15, normalized size = 0.75 \begin {gather*} -\frac {1}{2} \, x^{2} + \frac {5}{4} \, x + \frac {x}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 16, normalized size = 0.80
method | result | size |
default | \(-\frac {x^{2}}{2}+\frac {5 x}{4}+\frac {x}{\ln \relax (x )}\) | \(16\) |
risch | \(-\frac {x^{2}}{2}+\frac {5 x}{4}+\frac {x}{\ln \relax (x )}\) | \(16\) |
norman | \(\frac {x +\frac {5 x \ln \relax (x )}{4}-\frac {x^{2} \ln \relax (x )}{2}}{\ln \relax (x )}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.38, size = 20, normalized size = 1.00 \begin {gather*} -\frac {1}{2} \, x^{2} + \frac {5}{4} \, x + {\rm Ei}\left (\log \relax (x)\right ) - \Gamma \left (-1, -\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.46, size = 15, normalized size = 0.75 \begin {gather*} \frac {x}{\ln \relax (x)}-\frac {x\,\left (2\,x-5\right )}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 14, normalized size = 0.70 \begin {gather*} - \frac {x^{2}}{2} + \frac {5 x}{4} + \frac {x}{\log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________