Optimal. Leaf size=27 \[ \frac {1}{3} \left (e^{-e^{e^x}} \left (6-e^{1+x}\right )-x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.56, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{3} e^{-e^{e^x}} \left (-e^{e^{e^x}}-e^{1+x}+e^{e^x} \left (-6 e^x+e^{1+2 x}\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int e^{-e^{e^x}} \left (-e^{e^{e^x}}-e^{1+x}+e^{e^x} \left (-6 e^x+e^{1+2 x}\right )\right ) \, dx\\ &=\frac {1}{3} \operatorname {Subst}\left (\int \frac {e^{-e^x} \left (-e^{e^x}-e x-6 e^x x+e^{1+x} x^2\right )}{x} \, dx,x,e^x\right )\\ &=\frac {1}{3} \operatorname {Subst}\left (\int \left (e^{-e^x+x} (-6+e x)-\frac {e^{-e^x} \left (e^{e^x}+e x\right )}{x}\right ) \, dx,x,e^x\right )\\ &=\frac {1}{3} \operatorname {Subst}\left (\int e^{-e^x+x} (-6+e x) \, dx,x,e^x\right )-\frac {1}{3} \operatorname {Subst}\left (\int \frac {e^{-e^x} \left (e^{e^x}+e x\right )}{x} \, dx,x,e^x\right )\\ &=-\left (\frac {1}{3} \operatorname {Subst}\left (\int \left (e^{1-e^x}+\frac {1}{x}\right ) \, dx,x,e^x\right )\right )+\frac {1}{3} \operatorname {Subst}\left (\int \left (-6 e^{-e^x+x}+e^{1-e^x+x} x\right ) \, dx,x,e^x\right )\\ &=-\frac {x}{3}-\frac {1}{3} \operatorname {Subst}\left (\int e^{1-e^x} \, dx,x,e^x\right )+\frac {1}{3} \operatorname {Subst}\left (\int e^{1-e^x+x} x \, dx,x,e^x\right )-2 \operatorname {Subst}\left (\int e^{-e^x+x} \, dx,x,e^x\right )\\ &=-\frac {x}{3}-\frac {1}{3} \operatorname {Subst}\left (\int \frac {e^{1-x}}{x} \, dx,x,e^{e^x}\right )+\frac {1}{3} \operatorname {Subst}\left (\int e^{1-e^x+x} x \, dx,x,e^x\right )-2 \operatorname {Subst}\left (\int e^{-x} \, dx,x,e^{e^x}\right )\\ &=2 e^{-e^{e^x}}-\frac {x}{3}-\frac {1}{3} e \text {Ei}\left (-e^{e^x}\right )+\frac {1}{3} \operatorname {Subst}\left (\int e^{1-e^x+x} x \, dx,x,e^x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 26, normalized size = 0.96 \begin {gather*} \frac {1}{3} \left (-e^{-e^{e^x}} \left (-6+e^{1+x}\right )-x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.93, size = 20, normalized size = 0.74 \begin {gather*} -\frac {1}{3} \, {\left (x e^{\left (e^{\left (e^{x}\right )}\right )} + e^{\left (x + 1\right )} - 6\right )} e^{\left (-e^{\left (e^{x}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 35, normalized size = 1.30 \begin {gather*} -\frac {1}{3} \, {\left (x e^{\left (e^{x}\right )} + e^{\left (x + e^{x} - e^{\left (e^{x}\right )} + 1\right )} - 6 \, e^{\left (e^{x} - e^{\left (e^{x}\right )}\right )}\right )} e^{\left (-e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 21, normalized size = 0.78
method | result | size |
risch | \(-\frac {x}{3}+\frac {\left (6-{\mathrm e}^{x +1}\right ) {\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{x}}}}{3}\) | \(21\) |
norman | \(\left (2-\frac {{\mathrm e} \,{\mathrm e}^{x}}{3}-\frac {{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x}}} x}{3}\right ) {\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{x}}}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 18, normalized size = 0.67 \begin {gather*} -\frac {1}{3} \, {\left (e^{\left (x + 1\right )} - 6\right )} e^{\left (-e^{\left (e^{x}\right )}\right )} - \frac {1}{3} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.30, size = 24, normalized size = 0.89 \begin {gather*} 2\,{\mathrm {e}}^{-{\mathrm {e}}^{{\mathrm {e}}^x}}-\frac {x}{3}-\frac {{\mathrm {e}}^{-{\mathrm {e}}^{{\mathrm {e}}^x}}\,\mathrm {e}\,{\mathrm {e}}^x}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 19, normalized size = 0.70 \begin {gather*} - \frac {x}{3} + \frac {\left (- e e^{x} + 6\right ) e^{- e^{e^{x}}}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________