Optimal. Leaf size=27 \[ \frac {1}{4} \left (-e^x+\frac {1}{2 e^{(-4+x)^4}-x}\right )+x \]
________________________________________________________________________________________
Rubi [F] time = 16.86, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1+e^{512-512 x+192 x^2-32 x^3+2 x^4} \left (16-4 e^x\right )+4 x^2-e^x x^2+e^{256-256 x+96 x^2-16 x^3+x^4} \left (512-400 x+4 e^x x+96 x^2-8 x^3\right )}{16 e^{512-512 x+192 x^2-32 x^3+2 x^4}-16 e^{256-256 x+96 x^2-16 x^3+x^4} x+4 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{32 x \left (16+x^2\right )} \left (1+e^{512-512 x+192 x^2-32 x^3+2 x^4} \left (16-4 e^x\right )+4 x^2-e^x x^2+e^{256-256 x+96 x^2-16 x^3+x^4} \left (512-400 x+4 e^x x+96 x^2-8 x^3\right )\right )}{4 \left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2} \, dx\\ &=\frac {1}{4} \int \frac {e^{32 x \left (16+x^2\right )} \left (1+e^{512-512 x+192 x^2-32 x^3+2 x^4} \left (16-4 e^x\right )+4 x^2-e^x x^2+e^{256-256 x+96 x^2-16 x^3+x^4} \left (512-400 x+4 e^x x+96 x^2-8 x^3\right )\right )}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2} \, dx\\ &=\frac {1}{4} \int \frac {e^{32 x \left (16+x^2\right )} \left (1-4 e^{2 (-4+x)^4} \left (-4+e^x\right )+4 x^2-e^x x^2+4 e^{(-4+x)^4} \left (128+\left (-100+e^x\right ) x+24 x^2-2 x^3\right )\right )}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2} \, dx\\ &=\frac {1}{4} \int \left (\frac {e^{32 x \left (16+x^2\right )}}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2}+\frac {16 e^{2 (-4+x)^4+32 x \left (16+x^2\right )}}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2}+\frac {512 e^{256-256 x+96 x^2-16 x^3+x^4+32 x \left (16+x^2\right )}}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2}-\frac {4 \exp \left (512-511 x+192 x^2-32 x^3+2 x^4+32 x \left (16+x^2\right )\right )}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2}-\frac {400 e^{256-256 x+96 x^2-16 x^3+x^4+32 x \left (16+x^2\right )} x}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2}+\frac {4 e^{256-255 x+96 x^2-16 x^3+x^4+32 x \left (16+x^2\right )} x}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2}+\frac {96 e^{256-256 x+96 x^2-16 x^3+x^4+32 x \left (16+x^2\right )} x^2}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2}-\frac {8 e^{256-256 x+96 x^2-16 x^3+x^4+32 x \left (16+x^2\right )} x^3}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2}+\frac {4 e^{32 x \left (16+x^2\right )} x^2}{\left (-2 e^{256+96 x^2+x^4}+e^{16 x \left (16+x^2\right )} x\right )^2}-\frac {e^{x+32 x \left (16+x^2\right )} x^2}{\left (-2 e^{256+96 x^2+x^4}+e^{16 x \left (16+x^2\right )} x\right )^2}\right ) \, dx\\ &=\frac {1}{4} \int \frac {e^{32 x \left (16+x^2\right )}}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2} \, dx-\frac {1}{4} \int \frac {e^{x+32 x \left (16+x^2\right )} x^2}{\left (-2 e^{256+96 x^2+x^4}+e^{16 x \left (16+x^2\right )} x\right )^2} \, dx-2 \int \frac {e^{256-256 x+96 x^2-16 x^3+x^4+32 x \left (16+x^2\right )} x^3}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2} \, dx+4 \int \frac {e^{2 (-4+x)^4+32 x \left (16+x^2\right )}}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2} \, dx+24 \int \frac {e^{256-256 x+96 x^2-16 x^3+x^4+32 x \left (16+x^2\right )} x^2}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2} \, dx-100 \int \frac {e^{256-256 x+96 x^2-16 x^3+x^4+32 x \left (16+x^2\right )} x}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2} \, dx+128 \int \frac {e^{256-256 x+96 x^2-16 x^3+x^4+32 x \left (16+x^2\right )}}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2} \, dx-\int \frac {\exp \left (512-511 x+192 x^2-32 x^3+2 x^4+32 x \left (16+x^2\right )\right )}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2} \, dx+\int \frac {e^{256-255 x+96 x^2-16 x^3+x^4+32 x \left (16+x^2\right )} x}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2} \, dx+\int \frac {e^{32 x \left (16+x^2\right )} x^2}{\left (-2 e^{256+96 x^2+x^4}+e^{16 x \left (16+x^2\right )} x\right )^2} \, dx\\ &=\frac {1}{4} \int \frac {e^{32 x \left (16+x^2\right )}}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2} \, dx-\frac {1}{4} \int \frac {e^{513 x+32 x^3} x^2}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2} \, dx-2 \int \frac {e^{256+256 x+96 x^2+16 x^3+x^4} x^3}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2} \, dx+4 \int \frac {e^{512+192 x^2+2 x^4}}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2} \, dx+24 \int \frac {e^{256+256 x+96 x^2+16 x^3+x^4} x^2}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2} \, dx-100 \int \frac {e^{256+256 x+96 x^2+16 x^3+x^4} x}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2} \, dx+128 \int \frac {e^{256+256 x+96 x^2+16 x^3+x^4}}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2} \, dx-\int \frac {e^{512+x+192 x^2+2 x^4}}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2} \, dx+\int \frac {e^{256+257 x+96 x^2+16 x^3+x^4} x}{\left (2 e^{256+96 x^2+x^4}-e^{16 x \left (16+x^2\right )} x\right )^2} \, dx+\int \frac {e^{32 x \left (16+x^2\right )} x^2}{\left (-2 e^{256+96 x^2+x^4}+e^{16 x \left (16+x^2\right )} x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 180.00, size = 0, normalized size = 0.00 \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.67, size = 68, normalized size = 2.52 \begin {gather*} \frac {4 \, x^{2} - 2 \, {\left (4 \, x - e^{x}\right )} e^{\left (x^{4} - 16 \, x^{3} + 96 \, x^{2} - 256 \, x + 256\right )} - x e^{x} - 1}{4 \, {\left (x - 2 \, e^{\left (x^{4} - 16 \, x^{3} + 96 \, x^{2} - 256 \, x + 256\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.31, size = 908, normalized size = 33.63 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 21, normalized size = 0.78
method | result | size |
risch | \(x -\frac {{\mathrm e}^{x}}{4}-\frac {1}{4 \left (x -2 \,{\mathrm e}^{\left (x -4\right )^{4}}\right )}\) | \(21\) |
norman | \(\frac {-\frac {1}{4}+x^{2}-2 x \,{\mathrm e}^{x^{4}-16 x^{3}+96 x^{2}-256 x +256}-\frac {{\mathrm e}^{x} x}{4}+\frac {{\mathrm e}^{x} {\mathrm e}^{x^{4}-16 x^{3}+96 x^{2}-256 x +256}}{2}}{x -2 \,{\mathrm e}^{x^{4}-16 x^{3}+96 x^{2}-256 x +256}}\) | \(82\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.46, size = 82, normalized size = 3.04 \begin {gather*} -\frac {2 \, {\left (4 \, x e^{256} - e^{\left (x + 256\right )}\right )} e^{\left (x^{4} + 96 \, x^{2}\right )} + {\left (x e^{\left (257 \, x\right )} - {\left (4 \, x^{2} - 1\right )} e^{\left (256 \, x\right )}\right )} e^{\left (16 \, x^{3}\right )}}{4 \, {\left (x e^{\left (16 \, x^{3} + 256 \, x\right )} - 2 \, e^{\left (x^{4} + 96 \, x^{2} + 256\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.10, size = 38, normalized size = 1.41 \begin {gather*} x-\frac {{\mathrm {e}}^x}{4}-\frac {1}{4\,\left (x-2\,{\mathrm {e}}^{-256\,x}\,{\mathrm {e}}^{x^4}\,{\mathrm {e}}^{256}\,{\mathrm {e}}^{-16\,x^3}\,{\mathrm {e}}^{96\,x^2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 32, normalized size = 1.19 \begin {gather*} x - \frac {e^{x}}{4} + \frac {1}{- 4 x + 8 e^{x^{4} - 16 x^{3} + 96 x^{2} - 256 x + 256}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________