3.85.84 \(\int \frac {-16-27 x-2 x^2+(3 x+x^2) \log (e^{4 x} x^4)+(5 x-2 x^2+(-4 x-x^2) \log (e^{4 x} x^4)+(-5+2 x+(4+x) \log (e^{4 x} x^4)) \log (-5+2 x+(4+x) \log (e^{4 x} x^4))) \log (x-\log (-5+2 x+(4+x) \log (e^{4 x} x^4)))}{(5 x-2 x^2+(-4 x-x^2) \log (e^{4 x} x^4)+(-5+2 x+(4+x) \log (e^{4 x} x^4)) \log (-5+2 x+(4+x) \log (e^{4 x} x^4))) \log ^2(x-\log (-5+2 x+(4+x) \log (e^{4 x} x^4)))} \, dx\)

Optimal. Leaf size=31 \[ -5+\frac {x}{\log \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )} \]

________________________________________________________________________________________

Rubi [F]  time = 7.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-16-27 x-2 x^2+\left (3 x+x^2\right ) \log \left (e^{4 x} x^4\right )+\left (5 x-2 x^2+\left (-4 x-x^2\right ) \log \left (e^{4 x} x^4\right )+\left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right ) \log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right ) \log \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )}{\left (5 x-2 x^2+\left (-4 x-x^2\right ) \log \left (e^{4 x} x^4\right )+\left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right ) \log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right ) \log ^2\left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(-16 - 27*x - 2*x^2 + (3*x + x^2)*Log[E^(4*x)*x^4] + (5*x - 2*x^2 + (-4*x - x^2)*Log[E^(4*x)*x^4] + (-5 +
2*x + (4 + x)*Log[E^(4*x)*x^4])*Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]])*Log[x - Log[-5 + 2*x + (4 + x)*Log[E
^(4*x)*x^4]]])/((5*x - 2*x^2 + (-4*x - x^2)*Log[E^(4*x)*x^4] + (-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4])*Log[-5 +
2*x + (4 + x)*Log[E^(4*x)*x^4]])*Log[x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]]]^2),x]

[Out]

16*Defer[Int][1/((-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4])*(x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]])*Log[x -
Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]]]^2), x] + 27*Defer[Int][x/((-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4])*(x -
 Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]])*Log[x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]]]^2), x] + 2*Defer[
Int][x^2/((-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4])*(x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]])*Log[x - Log[-5
+ 2*x + (4 + x)*Log[E^(4*x)*x^4]]]^2), x] - 3*Defer[Int][(x*Log[E^(4*x)*x^4])/((-5 + 2*x + (4 + x)*Log[E^(4*x)
*x^4])*(x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]])*Log[x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]]]^2), x]
 - Defer[Int][(x^2*Log[E^(4*x)*x^4])/((-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4])*(x - Log[-5 + 2*x + (4 + x)*Log[E^
(4*x)*x^4]])*Log[x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]]]^2), x] + Defer[Int][Log[x - Log[-5 + 2*x + (4 +
 x)*Log[E^(4*x)*x^4]]]^(-1), x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-16-27 x-2 x^2+x (3+x) \log \left (e^{4 x} x^4\right )-\left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right ) \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right ) \log \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )}{\left (5-2 x-(4+x) \log \left (e^{4 x} x^4\right )\right ) \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right ) \log ^2\left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )} \, dx\\ &=\int \left (\frac {16+27 x+2 x^2-3 x \log \left (e^{4 x} x^4\right )-x^2 \log \left (e^{4 x} x^4\right )}{\left (-5+2 x+4 \log \left (e^{4 x} x^4\right )+x \log \left (e^{4 x} x^4\right )\right ) \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right ) \log ^2\left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )}+\frac {1}{\log \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )}\right ) \, dx\\ &=\int \frac {16+27 x+2 x^2-3 x \log \left (e^{4 x} x^4\right )-x^2 \log \left (e^{4 x} x^4\right )}{\left (-5+2 x+4 \log \left (e^{4 x} x^4\right )+x \log \left (e^{4 x} x^4\right )\right ) \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right ) \log ^2\left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )} \, dx+\int \frac {1}{\log \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )} \, dx\\ &=\int \frac {-16-27 x-2 x^2+x (3+x) \log \left (e^{4 x} x^4\right )}{\left (5-2 x-(4+x) \log \left (e^{4 x} x^4\right )\right ) \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right ) \log ^2\left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )} \, dx+\int \frac {1}{\log \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )} \, dx\\ &=\int \left (\frac {16}{\left (-5+2 x+4 \log \left (e^{4 x} x^4\right )+x \log \left (e^{4 x} x^4\right )\right ) \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right ) \log ^2\left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )}+\frac {27 x}{\left (-5+2 x+4 \log \left (e^{4 x} x^4\right )+x \log \left (e^{4 x} x^4\right )\right ) \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right ) \log ^2\left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )}+\frac {2 x^2}{\left (-5+2 x+4 \log \left (e^{4 x} x^4\right )+x \log \left (e^{4 x} x^4\right )\right ) \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right ) \log ^2\left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )}-\frac {3 x \log \left (e^{4 x} x^4\right )}{\left (-5+2 x+4 \log \left (e^{4 x} x^4\right )+x \log \left (e^{4 x} x^4\right )\right ) \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right ) \log ^2\left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )}-\frac {x^2 \log \left (e^{4 x} x^4\right )}{\left (-5+2 x+4 \log \left (e^{4 x} x^4\right )+x \log \left (e^{4 x} x^4\right )\right ) \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right ) \log ^2\left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )}\right ) \, dx+\int \frac {1}{\log \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )} \, dx\\ &=2 \int \frac {x^2}{\left (-5+2 x+4 \log \left (e^{4 x} x^4\right )+x \log \left (e^{4 x} x^4\right )\right ) \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right ) \log ^2\left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )} \, dx-3 \int \frac {x \log \left (e^{4 x} x^4\right )}{\left (-5+2 x+4 \log \left (e^{4 x} x^4\right )+x \log \left (e^{4 x} x^4\right )\right ) \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right ) \log ^2\left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )} \, dx+16 \int \frac {1}{\left (-5+2 x+4 \log \left (e^{4 x} x^4\right )+x \log \left (e^{4 x} x^4\right )\right ) \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right ) \log ^2\left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )} \, dx+27 \int \frac {x}{\left (-5+2 x+4 \log \left (e^{4 x} x^4\right )+x \log \left (e^{4 x} x^4\right )\right ) \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right ) \log ^2\left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )} \, dx-\int \frac {x^2 \log \left (e^{4 x} x^4\right )}{\left (-5+2 x+4 \log \left (e^{4 x} x^4\right )+x \log \left (e^{4 x} x^4\right )\right ) \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right ) \log ^2\left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )} \, dx+\int \frac {1}{\log \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )} \, dx\\ &=2 \int \frac {x^2}{\left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right ) \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right ) \log ^2\left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )} \, dx-3 \int \frac {x \log \left (e^{4 x} x^4\right )}{\left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right ) \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right ) \log ^2\left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )} \, dx+16 \int \frac {1}{\left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right ) \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right ) \log ^2\left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )} \, dx+27 \int \frac {x}{\left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right ) \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right ) \log ^2\left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )} \, dx-\int \frac {x^2 \log \left (e^{4 x} x^4\right )}{\left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right ) \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right ) \log ^2\left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )} \, dx+\int \frac {1}{\log \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )} \, dx\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.11, size = 29, normalized size = 0.94 \begin {gather*} \frac {x}{\log \left (x-\log \left (-5+2 x+(4+x) \log \left (e^{4 x} x^4\right )\right )\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-16 - 27*x - 2*x^2 + (3*x + x^2)*Log[E^(4*x)*x^4] + (5*x - 2*x^2 + (-4*x - x^2)*Log[E^(4*x)*x^4] +
(-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4])*Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]])*Log[x - Log[-5 + 2*x + (4 + x)
*Log[E^(4*x)*x^4]]])/((5*x - 2*x^2 + (-4*x - x^2)*Log[E^(4*x)*x^4] + (-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4])*Log
[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]])*Log[x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]]]^2),x]

[Out]

x/Log[x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]]]

________________________________________________________________________________________

fricas [A]  time = 0.86, size = 28, normalized size = 0.90 \begin {gather*} \frac {x}{\log \left (x - \log \left ({\left (x + 4\right )} \log \left (x^{4} e^{\left (4 \, x\right )}\right ) + 2 \, x - 5\right )\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((4+x)*log(x^4*exp(x)^4)+2*x-5)*log((4+x)*log(x^4*exp(x)^4)+2*x-5)+(-x^2-4*x)*log(x^4*exp(x)^4)-2*
x^2+5*x)*log(-log((4+x)*log(x^4*exp(x)^4)+2*x-5)+x)+(x^2+3*x)*log(x^4*exp(x)^4)-2*x^2-27*x-16)/(((4+x)*log(x^4
*exp(x)^4)+2*x-5)*log((4+x)*log(x^4*exp(x)^4)+2*x-5)+(-x^2-4*x)*log(x^4*exp(x)^4)-2*x^2+5*x)/log(-log((4+x)*lo
g(x^4*exp(x)^4)+2*x-5)+x)^2,x, algorithm="fricas")

[Out]

x/log(x - log((x + 4)*log(x^4*e^(4*x)) + 2*x - 5))

________________________________________________________________________________________

giac [A]  time = 6.72, size = 32, normalized size = 1.03 \begin {gather*} \frac {x}{\log \left (x - \log \left (4 \, x^{2} + x \log \left (x^{4}\right ) + 18 \, x + 4 \, \log \left (x^{4}\right ) - 5\right )\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((4+x)*log(x^4*exp(x)^4)+2*x-5)*log((4+x)*log(x^4*exp(x)^4)+2*x-5)+(-x^2-4*x)*log(x^4*exp(x)^4)-2*
x^2+5*x)*log(-log((4+x)*log(x^4*exp(x)^4)+2*x-5)+x)+(x^2+3*x)*log(x^4*exp(x)^4)-2*x^2-27*x-16)/(((4+x)*log(x^4
*exp(x)^4)+2*x-5)*log((4+x)*log(x^4*exp(x)^4)+2*x-5)+(-x^2-4*x)*log(x^4*exp(x)^4)-2*x^2+5*x)/log(-log((4+x)*lo
g(x^4*exp(x)^4)+2*x-5)+x)^2,x, algorithm="giac")

[Out]

x/log(x - log(4*x^2 + x*log(x^4) + 18*x + 4*log(x^4) - 5))

________________________________________________________________________________________

maple [C]  time = 0.58, size = 329, normalized size = 10.61




method result size



risch \(\frac {x}{\ln \left (-\ln \left (\left (4+x \right ) \left (4 \ln \relax (x )+4 \ln \left ({\mathrm e}^{x}\right )-\frac {i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{2 x}\right ) \left (-\mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )+\mathrm {csgn}\left (i {\mathrm e}^{x}\right )\right )^{2}}{2}-\frac {i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{3 x}\right ) \left (-\mathrm {csgn}\left (i {\mathrm e}^{3 x}\right )+\mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )\right ) \left (-\mathrm {csgn}\left (i {\mathrm e}^{3 x}\right )+\mathrm {csgn}\left (i {\mathrm e}^{x}\right )\right )}{2}-\frac {i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{4 x}\right ) \left (-\mathrm {csgn}\left (i {\mathrm e}^{4 x}\right )+\mathrm {csgn}\left (i {\mathrm e}^{3 x}\right )\right ) \left (-\mathrm {csgn}\left (i {\mathrm e}^{4 x}\right )+\mathrm {csgn}\left (i {\mathrm e}^{x}\right )\right )}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x^{3}\right ) \left (-\mathrm {csgn}\left (i x^{3}\right )+\mathrm {csgn}\left (i x^{2}\right )\right ) \left (-\mathrm {csgn}\left (i x^{3}\right )+\mathrm {csgn}\left (i x \right )\right )}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x^{4}\right ) \left (-\mathrm {csgn}\left (i x^{4}\right )+\mathrm {csgn}\left (i x^{3}\right )\right ) \left (-\mathrm {csgn}\left (i x^{4}\right )+\mathrm {csgn}\left (i x \right )\right )}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x^{4} {\mathrm e}^{4 x}\right ) \left (-\mathrm {csgn}\left (i x^{4} {\mathrm e}^{4 x}\right )+\mathrm {csgn}\left (i x^{4}\right )\right ) \left (-\mathrm {csgn}\left (i x^{4} {\mathrm e}^{4 x}\right )+\mathrm {csgn}\left (i {\mathrm e}^{4 x}\right )\right )}{2}\right )+2 x -5\right )+x \right )}\) \(329\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((((4+x)*ln(x^4*exp(x)^4)+2*x-5)*ln((4+x)*ln(x^4*exp(x)^4)+2*x-5)+(-x^2-4*x)*ln(x^4*exp(x)^4)-2*x^2+5*x)*l
n(-ln((4+x)*ln(x^4*exp(x)^4)+2*x-5)+x)+(x^2+3*x)*ln(x^4*exp(x)^4)-2*x^2-27*x-16)/(((4+x)*ln(x^4*exp(x)^4)+2*x-
5)*ln((4+x)*ln(x^4*exp(x)^4)+2*x-5)+(-x^2-4*x)*ln(x^4*exp(x)^4)-2*x^2+5*x)/ln(-ln((4+x)*ln(x^4*exp(x)^4)+2*x-5
)+x)^2,x,method=_RETURNVERBOSE)

[Out]

x/ln(-ln((4+x)*(4*ln(x)+4*ln(exp(x))-1/2*I*Pi*csgn(I*exp(2*x))*(-csgn(I*exp(2*x))+csgn(I*exp(x)))^2-1/2*I*Pi*c
sgn(I*exp(3*x))*(-csgn(I*exp(3*x))+csgn(I*exp(2*x)))*(-csgn(I*exp(3*x))+csgn(I*exp(x)))-1/2*I*Pi*csgn(I*exp(4*
x))*(-csgn(I*exp(4*x))+csgn(I*exp(3*x)))*(-csgn(I*exp(4*x))+csgn(I*exp(x)))-1/2*I*Pi*csgn(I*x^2)*(-csgn(I*x^2)
+csgn(I*x))^2-1/2*I*Pi*csgn(I*x^3)*(-csgn(I*x^3)+csgn(I*x^2))*(-csgn(I*x^3)+csgn(I*x))-1/2*I*Pi*csgn(I*x^4)*(-
csgn(I*x^4)+csgn(I*x^3))*(-csgn(I*x^4)+csgn(I*x))-1/2*I*Pi*csgn(I*x^4*exp(4*x))*(-csgn(I*x^4*exp(4*x))+csgn(I*
x^4))*(-csgn(I*x^4*exp(4*x))+csgn(I*exp(4*x))))+2*x-5)+x)

________________________________________________________________________________________

maxima [A]  time = 0.69, size = 27, normalized size = 0.87 \begin {gather*} \frac {x}{\log \left (x - \log \left (4 \, x^{2} + 4 \, {\left (x + 4\right )} \log \relax (x) + 18 \, x - 5\right )\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((4+x)*log(x^4*exp(x)^4)+2*x-5)*log((4+x)*log(x^4*exp(x)^4)+2*x-5)+(-x^2-4*x)*log(x^4*exp(x)^4)-2*
x^2+5*x)*log(-log((4+x)*log(x^4*exp(x)^4)+2*x-5)+x)+(x^2+3*x)*log(x^4*exp(x)^4)-2*x^2-27*x-16)/(((4+x)*log(x^4
*exp(x)^4)+2*x-5)*log((4+x)*log(x^4*exp(x)^4)+2*x-5)+(-x^2-4*x)*log(x^4*exp(x)^4)-2*x^2+5*x)/log(-log((4+x)*lo
g(x^4*exp(x)^4)+2*x-5)+x)^2,x, algorithm="maxima")

[Out]

x/log(x - log(4*x^2 + 4*(x + 4)*log(x) + 18*x - 5))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {27\,x-\ln \left (x^4\,{\mathrm {e}}^{4\,x}\right )\,\left (x^2+3\,x\right )+2\,x^2-\ln \left (x-\ln \left (2\,x+\ln \left (x^4\,{\mathrm {e}}^{4\,x}\right )\,\left (x+4\right )-5\right )\right )\,\left (5\,x-\ln \left (x^4\,{\mathrm {e}}^{4\,x}\right )\,\left (x^2+4\,x\right )+\ln \left (2\,x+\ln \left (x^4\,{\mathrm {e}}^{4\,x}\right )\,\left (x+4\right )-5\right )\,\left (2\,x+\ln \left (x^4\,{\mathrm {e}}^{4\,x}\right )\,\left (x+4\right )-5\right )-2\,x^2\right )+16}{{\ln \left (x-\ln \left (2\,x+\ln \left (x^4\,{\mathrm {e}}^{4\,x}\right )\,\left (x+4\right )-5\right )\right )}^2\,\left (5\,x-\ln \left (x^4\,{\mathrm {e}}^{4\,x}\right )\,\left (x^2+4\,x\right )+\ln \left (2\,x+\ln \left (x^4\,{\mathrm {e}}^{4\,x}\right )\,\left (x+4\right )-5\right )\,\left (2\,x+\ln \left (x^4\,{\mathrm {e}}^{4\,x}\right )\,\left (x+4\right )-5\right )-2\,x^2\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(27*x - log(x^4*exp(4*x))*(3*x + x^2) + 2*x^2 - log(x - log(2*x + log(x^4*exp(4*x))*(x + 4) - 5))*(5*x -
log(x^4*exp(4*x))*(4*x + x^2) + log(2*x + log(x^4*exp(4*x))*(x + 4) - 5)*(2*x + log(x^4*exp(4*x))*(x + 4) - 5)
 - 2*x^2) + 16)/(log(x - log(2*x + log(x^4*exp(4*x))*(x + 4) - 5))^2*(5*x - log(x^4*exp(4*x))*(4*x + x^2) + lo
g(2*x + log(x^4*exp(4*x))*(x + 4) - 5)*(2*x + log(x^4*exp(4*x))*(x + 4) - 5) - 2*x^2)),x)

[Out]

int(-(27*x - log(x^4*exp(4*x))*(3*x + x^2) + 2*x^2 - log(x - log(2*x + log(x^4*exp(4*x))*(x + 4) - 5))*(5*x -
log(x^4*exp(4*x))*(4*x + x^2) + log(2*x + log(x^4*exp(4*x))*(x + 4) - 5)*(2*x + log(x^4*exp(4*x))*(x + 4) - 5)
 - 2*x^2) + 16)/(log(x - log(2*x + log(x^4*exp(4*x))*(x + 4) - 5))^2*(5*x - log(x^4*exp(4*x))*(4*x + x^2) + lo
g(2*x + log(x^4*exp(4*x))*(x + 4) - 5)*(2*x + log(x^4*exp(4*x))*(x + 4) - 5) - 2*x^2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((4+x)*ln(x**4*exp(x)**4)+2*x-5)*ln((4+x)*ln(x**4*exp(x)**4)+2*x-5)+(-x**2-4*x)*ln(x**4*exp(x)**4)
-2*x**2+5*x)*ln(-ln((4+x)*ln(x**4*exp(x)**4)+2*x-5)+x)+(x**2+3*x)*ln(x**4*exp(x)**4)-2*x**2-27*x-16)/(((4+x)*l
n(x**4*exp(x)**4)+2*x-5)*ln((4+x)*ln(x**4*exp(x)**4)+2*x-5)+(-x**2-4*x)*ln(x**4*exp(x)**4)-2*x**2+5*x)/ln(-ln(
(4+x)*ln(x**4*exp(x)**4)+2*x-5)+x)**2,x)

[Out]

Timed out

________________________________________________________________________________________