Optimal. Leaf size=17 \[ \log \left (3-e^{e^x}-3 x+\log \left (x^4\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4+3 x+e^{e^x+x} x}{-3 x+e^{e^x} x+3 x^2-x \log \left (x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {e^{e^x+x}}{-3+e^{e^x}+3 x-\log \left (x^4\right )}+\frac {-4+3 x}{x \left (-3+e^{e^x}+3 x-\log \left (x^4\right )\right )}\right ) \, dx\\ &=\int \frac {e^{e^x+x}}{-3+e^{e^x}+3 x-\log \left (x^4\right )} \, dx+\int \frac {-4+3 x}{x \left (-3+e^{e^x}+3 x-\log \left (x^4\right )\right )} \, dx\\ &=\int \left (\frac {3}{-3+e^{e^x}+3 x-\log \left (x^4\right )}-\frac {4}{x \left (-3+e^{e^x}+3 x-\log \left (x^4\right )\right )}\right ) \, dx+\int \frac {e^{e^x+x}}{-3+e^{e^x}+3 x-\log \left (x^4\right )} \, dx\\ &=3 \int \frac {1}{-3+e^{e^x}+3 x-\log \left (x^4\right )} \, dx-4 \int \frac {1}{x \left (-3+e^{e^x}+3 x-\log \left (x^4\right )\right )} \, dx+\int \frac {e^{e^x+x}}{-3+e^{e^x}+3 x-\log \left (x^4\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.33, size = 17, normalized size = 1.00 \begin {gather*} \log \left (3-e^{e^x}-3 x+\log \left (x^4\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.15, size = 26, normalized size = 1.53 \begin {gather*} -x + \log \left (3 \, {\left (x - 1\right )} e^{x} - e^{x} \log \left (x^{4}\right ) + e^{\left (x + e^{x}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 28, normalized size = 1.65 \begin {gather*} -x + \log \left (3 \, x e^{x} - e^{x} \log \left (x^{4}\right ) + e^{\left (x + e^{x}\right )} - 3 \, e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.15, size = 201, normalized size = 11.82
method | result | size |
risch | \(\ln \left ({\mathrm e}^{{\mathrm e}^{x}}+\frac {i \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )^{2}+\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right ) \mathrm {csgn}\left (i x^{4}\right )-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{4}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}-\pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{2}+\pi \mathrm {csgn}\left (i x^{3}\right )^{3}-\pi \,\mathrm {csgn}\left (i x^{3}\right ) \mathrm {csgn}\left (i x^{4}\right )^{2}+\pi \mathrm {csgn}\left (i x^{4}\right )^{3}-6 i x +8 i \ln \relax (x )+6 i\right )}{2}\right )\) | \(201\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 13, normalized size = 0.76 \begin {gather*} \log \left (3 \, x + e^{\left (e^{x}\right )} - 4 \, \log \relax (x) - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.40, size = 15, normalized size = 0.88 \begin {gather*} \ln \left (3\,x+{\mathrm {e}}^{{\mathrm {e}}^x}-\ln \left (x^4\right )-3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 15, normalized size = 0.88 \begin {gather*} \log {\left (3 x + e^{e^{x}} - \log {\left (x^{4} \right )} - 3 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________