Optimal. Leaf size=23 \[ \frac {25 \left (1+e^2\right )^2}{\log \left (\frac {4-\frac {x}{4}}{x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.16, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-400-800 e^2-400 e^4}{\left (-16 x+x^2\right ) \log ^2\left (\frac {16-x}{4 x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left (\left (400 \left (1+e^2\right )^2\right ) \int \frac {1}{\left (-16 x+x^2\right ) \log ^2\left (\frac {16-x}{4 x}\right )} \, dx\right )\\ &=-\left (\left (400 \left (1+e^2\right )^2\right ) \int \frac {1}{(-16+x) x \log ^2\left (\frac {16-x}{4 x}\right )} \, dx\right )\\ &=-\left (\left (400 \left (1+e^2\right )^2\right ) \int \frac {1}{(-16+x) x \log ^2\left (-\frac {1}{4}+\frac {4}{x}\right )} \, dx\right )\\ &=-\left (\left (400 \left (1+e^2\right )^2\right ) \int \left (\frac {1}{16 (-16+x) \log ^2\left (-\frac {1}{4}+\frac {4}{x}\right )}-\frac {1}{16 x \log ^2\left (-\frac {1}{4}+\frac {4}{x}\right )}\right ) \, dx\right )\\ &=-\left (\left (25 \left (1+e^2\right )^2\right ) \int \frac {1}{(-16+x) \log ^2\left (-\frac {1}{4}+\frac {4}{x}\right )} \, dx\right )+\left (25 \left (1+e^2\right )^2\right ) \int \frac {1}{x \log ^2\left (-\frac {1}{4}+\frac {4}{x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 23, normalized size = 1.00 \begin {gather*} \frac {25 \left (1+e^2\right )^2}{\log \left (\frac {4-\frac {x}{4}}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 21, normalized size = 0.91 \begin {gather*} \frac {25 \, {\left (e^{4} + 2 \, e^{2} + 1\right )}}{\log \left (-\frac {x - 16}{4 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 21, normalized size = 0.91 \begin {gather*} \frac {25 \, {\left (e^{4} + 2 \, e^{2} + 1\right )}}{\log \left (-\frac {x - 16}{4 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.36, size = 25, normalized size = 1.09
method | result | size |
derivativedivides | \(\frac {400 \,{\mathrm e}^{4}+800 \,{\mathrm e}^{2}+400}{16 \ln \left (-\frac {1}{4}+\frac {4}{x}\right )}\) | \(25\) |
default | \(-\frac {-400 \,{\mathrm e}^{4}-800 \,{\mathrm e}^{2}-400}{16 \ln \left (-\frac {1}{4}+\frac {4}{x}\right )}\) | \(25\) |
norman | \(\frac {25 \,{\mathrm e}^{4}+50 \,{\mathrm e}^{2}+25}{\ln \left (\frac {16-x}{4 x}\right )}\) | \(27\) |
risch | \(\frac {25 \,{\mathrm e}^{4}}{\ln \left (\frac {16-x}{4 x}\right )}+\frac {50 \,{\mathrm e}^{2}}{\ln \left (\frac {16-x}{4 x}\right )}+\frac {25}{\ln \left (\frac {16-x}{4 x}\right )}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 27, normalized size = 1.17 \begin {gather*} -\frac {25 \, {\left (e^{4} + 2 \, e^{2} + 1\right )}}{2 \, \log \relax (2) + \log \relax (x) - \log \left (-x + 16\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.26, size = 22, normalized size = 0.96 \begin {gather*} \frac {50\,{\mathrm {e}}^2+25\,{\mathrm {e}}^4+25}{\ln \left (-\frac {x-16}{4\,x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 19, normalized size = 0.83 \begin {gather*} \frac {25 + 50 e^{2} + 25 e^{4}}{\log {\left (\frac {4 - \frac {x}{4}}{x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________