Optimal. Leaf size=17 \[ 4+2 x-\frac {10 x}{3 e^4 \log (5)} \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 16, normalized size of antiderivative = 0.94, number of steps used = 1, number of rules used = 1, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.050, Rules used = {8} \begin {gather*} \frac {2}{3} x \left (3-\frac {5}{e^4 \log (5)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {2}{3} x \left (3-\frac {5}{e^4 \log (5)}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 16, normalized size = 0.94 \begin {gather*} 2 x-\frac {10 x}{3 e^4 \log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 19, normalized size = 1.12 \begin {gather*} \frac {2 \, {\left (3 \, x e^{4} \log \relax (5) - 5 \, x\right )} e^{\left (-4\right )}}{3 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 17, normalized size = 1.00 \begin {gather*} \frac {2 \, {\left (3 \, e^{4} \log \relax (5) - 5\right )} x e^{\left (-4\right )}}{3 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 18, normalized size = 1.06
method | result | size |
risch | \(2 \,{\mathrm e}^{-4} x \,{\mathrm e}^{4}-\frac {10 \,{\mathrm e}^{-4} x}{3 \ln \relax (5)}\) | \(18\) |
default | \(\frac {\left (6 \,{\mathrm e}^{4} \ln \relax (5)-10\right ) {\mathrm e}^{-4} x}{3 \ln \relax (5)}\) | \(20\) |
norman | \(\frac {2 \left (3 \,{\mathrm e}^{4} \ln \relax (5)-5\right ) {\mathrm e}^{-4} x}{3 \ln \relax (5)}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 17, normalized size = 1.00 \begin {gather*} \frac {2 \, {\left (3 \, e^{4} \log \relax (5) - 5\right )} x e^{\left (-4\right )}}{3 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.00, size = 16, normalized size = 0.94 \begin {gather*} \frac {x\,{\mathrm {e}}^{-4}\,\left (2\,{\mathrm {e}}^4\,\ln \relax (5)-\frac {10}{3}\right )}{\ln \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.05, size = 19, normalized size = 1.12 \begin {gather*} \frac {x \left (- \frac {10}{3} + 2 e^{4} \log {\relax (5 )}\right )}{e^{4} \log {\relax (5 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________