Optimal. Leaf size=24 \[ \frac {1}{5} e^{x/4} (1-2 x) \log \left (\frac {1}{5} x \log (5)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 40, normalized size of antiderivative = 1.67, number of steps used = 14, number of rules used = 7, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {12, 14, 2194, 2178, 2554, 2176, 2199} \begin {gather*} \frac {1}{5} e^{x/4} \log \left (\frac {1}{5} x \log (5)\right )-\frac {2}{5} e^{x/4} x \log \left (\frac {1}{5} x \log (5)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2176
Rule 2178
Rule 2194
Rule 2199
Rule 2554
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{20} \int \frac {e^{x/4} (4-8 x)+e^{x/4} \left (-7 x-2 x^2\right ) \log \left (\frac {1}{5} x \log (5)\right )}{x} \, dx\\ &=\frac {1}{20} \int \left (-8 e^{x/4}+\frac {4 e^{x/4}}{x}-7 e^{x/4} \log \left (\frac {1}{5} x \log (5)\right )-2 e^{x/4} x \log \left (\frac {1}{5} x \log (5)\right )\right ) \, dx\\ &=-\left (\frac {1}{10} \int e^{x/4} x \log \left (\frac {1}{5} x \log (5)\right ) \, dx\right )+\frac {1}{5} \int \frac {e^{x/4}}{x} \, dx-\frac {7}{20} \int e^{x/4} \log \left (\frac {1}{5} x \log (5)\right ) \, dx-\frac {2}{5} \int e^{x/4} \, dx\\ &=-\frac {8 e^{x/4}}{5}+\frac {\text {Ei}\left (\frac {x}{4}\right )}{5}+\frac {1}{5} e^{x/4} \log \left (\frac {1}{5} x \log (5)\right )-\frac {2}{5} e^{x/4} x \log \left (\frac {1}{5} x \log (5)\right )+\frac {1}{10} \int \frac {4 e^{x/4} (-4+x)}{x} \, dx+\frac {7}{20} \int \frac {4 e^{x/4}}{x} \, dx\\ &=-\frac {8 e^{x/4}}{5}+\frac {\text {Ei}\left (\frac {x}{4}\right )}{5}+\frac {1}{5} e^{x/4} \log \left (\frac {1}{5} x \log (5)\right )-\frac {2}{5} e^{x/4} x \log \left (\frac {1}{5} x \log (5)\right )+\frac {2}{5} \int \frac {e^{x/4} (-4+x)}{x} \, dx+\frac {7}{5} \int \frac {e^{x/4}}{x} \, dx\\ &=-\frac {8 e^{x/4}}{5}+\frac {8 \text {Ei}\left (\frac {x}{4}\right )}{5}+\frac {1}{5} e^{x/4} \log \left (\frac {1}{5} x \log (5)\right )-\frac {2}{5} e^{x/4} x \log \left (\frac {1}{5} x \log (5)\right )+\frac {2}{5} \int \left (e^{x/4}-\frac {4 e^{x/4}}{x}\right ) \, dx\\ &=-\frac {8 e^{x/4}}{5}+\frac {8 \text {Ei}\left (\frac {x}{4}\right )}{5}+\frac {1}{5} e^{x/4} \log \left (\frac {1}{5} x \log (5)\right )-\frac {2}{5} e^{x/4} x \log \left (\frac {1}{5} x \log (5)\right )+\frac {2}{5} \int e^{x/4} \, dx-\frac {8}{5} \int \frac {e^{x/4}}{x} \, dx\\ &=\frac {1}{5} e^{x/4} \log \left (\frac {1}{5} x \log (5)\right )-\frac {2}{5} e^{x/4} x \log \left (\frac {1}{5} x \log (5)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 24, normalized size = 1.00 \begin {gather*} -\frac {1}{5} e^{x/4} (-1+2 x) \log \left (\frac {1}{5} x \log (5)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 17, normalized size = 0.71 \begin {gather*} -\frac {1}{5} \, {\left (2 \, x - 1\right )} e^{\left (\frac {1}{4} \, x\right )} \log \left (\frac {1}{5} \, x \log \relax (5)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 41, normalized size = 1.71 \begin {gather*} \frac {2}{5} \, x e^{\left (\frac {1}{4} \, x\right )} \log \relax (5) - \frac {2}{5} \, x e^{\left (\frac {1}{4} \, x\right )} \log \left (x \log \relax (5)\right ) - \frac {1}{5} \, e^{\left (\frac {1}{4} \, x\right )} \log \relax (5) + \frac {1}{5} \, e^{\left (\frac {1}{4} \, x\right )} \log \left (x \log \relax (5)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 0.75
method | result | size |
risch | \(-\frac {{\mathrm e}^{\frac {x}{4}} \left (2 x -1\right ) \ln \left (\frac {x \ln \relax (5)}{5}\right )}{5}\) | \(18\) |
norman | \(\frac {{\mathrm e}^{\frac {x}{4}} \ln \left (\frac {x \ln \relax (5)}{5}\right )}{5}-\frac {2 x \,{\mathrm e}^{\frac {x}{4}} \ln \left (\frac {x \ln \relax (5)}{5}\right )}{5}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {2}{5} \, {\left (x - 4\right )} e^{\left (\frac {1}{4} \, x\right )} \log \relax (x) - \frac {7}{5} \, e^{\left (\frac {1}{4} \, x\right )} \log \left (\frac {1}{5} \, x \log \relax (5)\right ) + \frac {8}{5} \, {\rm Ei}\left (\frac {1}{4} \, x\right ) - \frac {8}{5} \, e^{\left (\frac {1}{4} \, x\right )} + \frac {1}{10} \, \int \frac {{\left (x^{2} {\left (\log \relax (5) - \log \left (\log \relax (5)\right )\right )} + 4 \, x - 16\right )} e^{\left (\frac {1}{4} \, x\right )}}{x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.41, size = 21, normalized size = 0.88 \begin {gather*} -\frac {{\mathrm {e}}^{x/4}\,\left (2\,x-1\right )\,\left (\ln \left (\ln \relax (5)\right )-\ln \relax (5)+\ln \relax (x)\right )}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 26, normalized size = 1.08 \begin {gather*} \frac {\left (- 2 x \log {\left (\frac {x \log {\relax (5 )}}{5} \right )} + \log {\left (\frac {x \log {\relax (5 )}}{5} \right )}\right ) e^{\frac {x}{4}}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________