Optimal. Leaf size=34 \[ \frac {x^2}{-x^2-\left (3+x-\log \left (\frac {4}{x \log (\log (-4+x))}\right )\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 44.24, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {6 x^2+2 x^3+\left (48 x+4 x^2-4 x^3\right ) \log (-4+x) \log (\log (-4+x))+\left (-2 x^2+\left (-40 x+2 x^2+2 x^3\right ) \log (-4+x) \log (\log (-4+x))\right ) \log \left (\frac {4}{x \log (\log (-4+x))}\right )+\left (8 x-2 x^2\right ) \log (-4+x) \log (\log (-4+x)) \log ^2\left (\frac {4}{x \log (\log (-4+x))}\right )}{\left (-324-351 x-180 x^2-24 x^3+8 x^4+4 x^5\right ) \log (-4+x) \log (\log (-4+x))+\left (432+324 x+84 x^2-16 x^3-8 x^4\right ) \log (-4+x) \log (\log (-4+x)) \log \left (\frac {4}{x \log (\log (-4+x))}\right )+\left (-216-90 x+4 x^2+8 x^3\right ) \log (-4+x) \log (\log (-4+x)) \log ^2\left (\frac {4}{x \log (\log (-4+x))}\right )+\left (48+4 x-4 x^2\right ) \log (-4+x) \log (\log (-4+x)) \log ^3\left (\frac {4}{x \log (\log (-4+x))}\right )+(-4+x) \log (-4+x) \log (\log (-4+x)) \log ^4\left (\frac {4}{x \log (\log (-4+x))}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x \left (x+(-4+x) \log (-4+x) \log (\log (-4+x)) \left (-2+\log \left (\frac {4}{x \log (\log (-4+x))}\right )\right )\right ) \left (-3-x+\log \left (\frac {4}{x \log (\log (-4+x))}\right )\right )}{(4-x) \log (-4+x) \log (\log (-4+x)) \left (9+6 x+2 x^2-2 (3+x) \log \left (\frac {4}{x \log (\log (-4+x))}\right )+\log ^2\left (\frac {4}{x \log (\log (-4+x))}\right )\right )^2} \, dx\\ &=2 \int \frac {x \left (x+(-4+x) \log (-4+x) \log (\log (-4+x)) \left (-2+\log \left (\frac {4}{x \log (\log (-4+x))}\right )\right )\right ) \left (-3-x+\log \left (\frac {4}{x \log (\log (-4+x))}\right )\right )}{(4-x) \log (-4+x) \log (\log (-4+x)) \left (9+6 x+2 x^2-2 (3+x) \log \left (\frac {4}{x \log (\log (-4+x))}\right )+\log ^2\left (\frac {4}{x \log (\log (-4+x))}\right )\right )^2} \, dx\\ &=2 \int \left (\frac {x \left (3 x+x^2-12 \log (-4+x) \log (\log (-4+x))-13 x \log (-4+x) \log (\log (-4+x))-4 x^2 \log (-4+x) \log (\log (-4+x))+2 x^3 \log (-4+x) \log (\log (-4+x))-x \log \left (\frac {4}{x \log (\log (-4+x))}\right )+4 \log (-4+x) \log (\log (-4+x)) \log \left (\frac {4}{x \log (\log (-4+x))}\right )+3 x \log (-4+x) \log (\log (-4+x)) \log \left (\frac {4}{x \log (\log (-4+x))}\right )-x^2 \log (-4+x) \log (\log (-4+x)) \log \left (\frac {4}{x \log (\log (-4+x))}\right )\right )}{(-4+x) \log (-4+x) \log (\log (-4+x)) \left (9+6 x+2 x^2-6 \log \left (\frac {4}{x \log (\log (-4+x))}\right )-2 x \log \left (\frac {4}{x \log (\log (-4+x))}\right )+\log ^2\left (\frac {4}{x \log (\log (-4+x))}\right )\right )^2}-\frac {x}{9+6 x+2 x^2-6 \log \left (\frac {4}{x \log (\log (-4+x))}\right )-2 x \log \left (\frac {4}{x \log (\log (-4+x))}\right )+\log ^2\left (\frac {4}{x \log (\log (-4+x))}\right )}\right ) \, dx\\ &=2 \int \frac {x \left (3 x+x^2-12 \log (-4+x) \log (\log (-4+x))-13 x \log (-4+x) \log (\log (-4+x))-4 x^2 \log (-4+x) \log (\log (-4+x))+2 x^3 \log (-4+x) \log (\log (-4+x))-x \log \left (\frac {4}{x \log (\log (-4+x))}\right )+4 \log (-4+x) \log (\log (-4+x)) \log \left (\frac {4}{x \log (\log (-4+x))}\right )+3 x \log (-4+x) \log (\log (-4+x)) \log \left (\frac {4}{x \log (\log (-4+x))}\right )-x^2 \log (-4+x) \log (\log (-4+x)) \log \left (\frac {4}{x \log (\log (-4+x))}\right )\right )}{(-4+x) \log (-4+x) \log (\log (-4+x)) \left (9+6 x+2 x^2-6 \log \left (\frac {4}{x \log (\log (-4+x))}\right )-2 x \log \left (\frac {4}{x \log (\log (-4+x))}\right )+\log ^2\left (\frac {4}{x \log (\log (-4+x))}\right )\right )^2} \, dx-2 \int \frac {x}{9+6 x+2 x^2-6 \log \left (\frac {4}{x \log (\log (-4+x))}\right )-2 x \log \left (\frac {4}{x \log (\log (-4+x))}\right )+\log ^2\left (\frac {4}{x \log (\log (-4+x))}\right )} \, dx\\ &=-\left (2 \int \frac {x}{9+6 x+2 x^2-6 \log \left (\frac {4}{x \log (\log (-4+x))}\right )-2 x \log \left (\frac {4}{x \log (\log (-4+x))}\right )+\log ^2\left (\frac {4}{x \log (\log (-4+x))}\right )} \, dx\right )+2 \int \frac {x \left (-x \left (3+x-\log \left (\frac {4}{x \log (\log (-4+x))}\right )\right )-(-4+x) \log (-4+x) \log (\log (-4+x)) \left (3+4 x+2 x^2-(1+x) \log \left (\frac {4}{x \log (\log (-4+x))}\right )\right )\right )}{(4-x) \log (-4+x) \log (\log (-4+x)) \left (9+6 x+2 x^2-2 (3+x) \log \left (\frac {4}{x \log (\log (-4+x))}\right )+\log ^2\left (\frac {4}{x \log (\log (-4+x))}\right )\right )^2} \, dx\\ &=-\left (2 \int \frac {x}{9+6 x+2 x^2-6 \log \left (\frac {4}{x \log (\log (-4+x))}\right )-2 x \log \left (\frac {4}{x \log (\log (-4+x))}\right )+\log ^2\left (\frac {4}{x \log (\log (-4+x))}\right )} \, dx\right )+2 \int \left (\frac {3 x+x^2-12 \log (-4+x) \log (\log (-4+x))-13 x \log (-4+x) \log (\log (-4+x))-4 x^2 \log (-4+x) \log (\log (-4+x))+2 x^3 \log (-4+x) \log (\log (-4+x))-x \log \left (\frac {4}{x \log (\log (-4+x))}\right )+4 \log (-4+x) \log (\log (-4+x)) \log \left (\frac {4}{x \log (\log (-4+x))}\right )+3 x \log (-4+x) \log (\log (-4+x)) \log \left (\frac {4}{x \log (\log (-4+x))}\right )-x^2 \log (-4+x) \log (\log (-4+x)) \log \left (\frac {4}{x \log (\log (-4+x))}\right )}{\log (-4+x) \log (\log (-4+x)) \left (9+6 x+2 x^2-6 \log \left (\frac {4}{x \log (\log (-4+x))}\right )-2 x \log \left (\frac {4}{x \log (\log (-4+x))}\right )+\log ^2\left (\frac {4}{x \log (\log (-4+x))}\right )\right )^2}+\frac {4 \left (3 x+x^2-12 \log (-4+x) \log (\log (-4+x))-13 x \log (-4+x) \log (\log (-4+x))-4 x^2 \log (-4+x) \log (\log (-4+x))+2 x^3 \log (-4+x) \log (\log (-4+x))-x \log \left (\frac {4}{x \log (\log (-4+x))}\right )+4 \log (-4+x) \log (\log (-4+x)) \log \left (\frac {4}{x \log (\log (-4+x))}\right )+3 x \log (-4+x) \log (\log (-4+x)) \log \left (\frac {4}{x \log (\log (-4+x))}\right )-x^2 \log (-4+x) \log (\log (-4+x)) \log \left (\frac {4}{x \log (\log (-4+x))}\right )\right )}{(-4+x) \log (-4+x) \log (\log (-4+x)) \left (9+6 x+2 x^2-6 \log \left (\frac {4}{x \log (\log (-4+x))}\right )-2 x \log \left (\frac {4}{x \log (\log (-4+x))}\right )+\log ^2\left (\frac {4}{x \log (\log (-4+x))}\right )\right )^2}\right ) \, dx\\ &=2 \int \frac {3 x+x^2-12 \log (-4+x) \log (\log (-4+x))-13 x \log (-4+x) \log (\log (-4+x))-4 x^2 \log (-4+x) \log (\log (-4+x))+2 x^3 \log (-4+x) \log (\log (-4+x))-x \log \left (\frac {4}{x \log (\log (-4+x))}\right )+4 \log (-4+x) \log (\log (-4+x)) \log \left (\frac {4}{x \log (\log (-4+x))}\right )+3 x \log (-4+x) \log (\log (-4+x)) \log \left (\frac {4}{x \log (\log (-4+x))}\right )-x^2 \log (-4+x) \log (\log (-4+x)) \log \left (\frac {4}{x \log (\log (-4+x))}\right )}{\log (-4+x) \log (\log (-4+x)) \left (9+6 x+2 x^2-6 \log \left (\frac {4}{x \log (\log (-4+x))}\right )-2 x \log \left (\frac {4}{x \log (\log (-4+x))}\right )+\log ^2\left (\frac {4}{x \log (\log (-4+x))}\right )\right )^2} \, dx-2 \int \frac {x}{9+6 x+2 x^2-6 \log \left (\frac {4}{x \log (\log (-4+x))}\right )-2 x \log \left (\frac {4}{x \log (\log (-4+x))}\right )+\log ^2\left (\frac {4}{x \log (\log (-4+x))}\right )} \, dx+8 \int \frac {3 x+x^2-12 \log (-4+x) \log (\log (-4+x))-13 x \log (-4+x) \log (\log (-4+x))-4 x^2 \log (-4+x) \log (\log (-4+x))+2 x^3 \log (-4+x) \log (\log (-4+x))-x \log \left (\frac {4}{x \log (\log (-4+x))}\right )+4 \log (-4+x) \log (\log (-4+x)) \log \left (\frac {4}{x \log (\log (-4+x))}\right )+3 x \log (-4+x) \log (\log (-4+x)) \log \left (\frac {4}{x \log (\log (-4+x))}\right )-x^2 \log (-4+x) \log (\log (-4+x)) \log \left (\frac {4}{x \log (\log (-4+x))}\right )}{(-4+x) \log (-4+x) \log (\log (-4+x)) \left (9+6 x+2 x^2-6 \log \left (\frac {4}{x \log (\log (-4+x))}\right )-2 x \log \left (\frac {4}{x \log (\log (-4+x))}\right )+\log ^2\left (\frac {4}{x \log (\log (-4+x))}\right )\right )^2} \, dx\\ &=-\left (2 \int \frac {x}{9+6 x+2 x^2-6 \log \left (\frac {4}{x \log (\log (-4+x))}\right )-2 x \log \left (\frac {4}{x \log (\log (-4+x))}\right )+\log ^2\left (\frac {4}{x \log (\log (-4+x))}\right )} \, dx\right )+2 \int \frac {x \left (3+x-\log \left (\frac {4}{x \log (\log (-4+x))}\right )\right )+(-4+x) \log (-4+x) \log (\log (-4+x)) \left (3+4 x+2 x^2-(1+x) \log \left (\frac {4}{x \log (\log (-4+x))}\right )\right )}{\log (-4+x) \log (\log (-4+x)) \left (9+6 x+2 x^2-2 (3+x) \log \left (\frac {4}{x \log (\log (-4+x))}\right )+\log ^2\left (\frac {4}{x \log (\log (-4+x))}\right )\right )^2} \, dx+8 \int \frac {-x \left (3+x-\log \left (\frac {4}{x \log (\log (-4+x))}\right )\right )-(-4+x) \log (-4+x) \log (\log (-4+x)) \left (3+4 x+2 x^2-(1+x) \log \left (\frac {4}{x \log (\log (-4+x))}\right )\right )}{(4-x) \log (-4+x) \log (\log (-4+x)) \left (9+6 x+2 x^2-2 (3+x) \log \left (\frac {4}{x \log (\log (-4+x))}\right )+\log ^2\left (\frac {4}{x \log (\log (-4+x))}\right )\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 50, normalized size = 1.47 \begin {gather*} -\frac {x^2}{9+6 x+2 x^2-2 (3+x) \log \left (\frac {4}{x \log (\log (-4+x))}\right )+\log ^2\left (\frac {4}{x \log (\log (-4+x))}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.95, size = 50, normalized size = 1.47 \begin {gather*} -\frac {x^{2}}{2 \, x^{2} - 2 \, {\left (x + 3\right )} \log \left (\frac {4}{x \log \left (\log \left (x - 4\right )\right )}\right ) + \log \left (\frac {4}{x \log \left (\log \left (x - 4\right )\right )}\right )^{2} + 6 \, x + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 6.82, size = 1024, normalized size = 30.12
method | result | size |
risch | \(-\frac {4 x^{2}}{36+24 x +16 \ln \relax (2)^{2}-48 \ln \relax (2)+24 \ln \relax (x )+4 \ln \relax (x )^{2}+8 x^{2}-4 i \ln \relax (x ) \pi \,\mathrm {csgn}\left (\frac {i}{\ln \left (\ln \left (x -4\right )\right )}\right ) \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )^{2}-4 i \ln \left (\ln \left (\ln \left (x -4\right )\right )\right ) \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )^{2}-4 i \ln \left (\ln \left (\ln \left (x -4\right )\right )\right ) \pi \,\mathrm {csgn}\left (\frac {i}{\ln \left (\ln \left (x -4\right )\right )}\right ) \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )^{2}-4 i \ln \relax (x ) \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )^{2}+12 i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (\ln \left (x -4\right )\right )}\right ) \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )+8 i \ln \relax (2) \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )^{2}+8 i \ln \relax (2) \pi \,\mathrm {csgn}\left (\frac {i}{\ln \left (\ln \left (x -4\right )\right )}\right ) \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )^{2}-4 i \pi x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )^{2}-4 i \pi x \,\mathrm {csgn}\left (\frac {i}{\ln \left (\ln \left (x -4\right )\right )}\right ) \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )^{2}-16 \ln \relax (2) \ln \relax (x )-16 x \ln \relax (2)+8 x \ln \relax (x )-\pi ^{2} \mathrm {csgn}\left (\frac {i}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \left (\ln \left (x -4\right )\right )}\right )^{2} \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )^{2}+2 \pi ^{2} \mathrm {csgn}\left (\frac {i}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \left (\ln \left (x -4\right )\right )}\right ) \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )^{3}+2 \pi ^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (\ln \left (x -4\right )\right )}\right )^{2} \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )^{3}-4 \pi ^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (\ln \left (x -4\right )\right )}\right ) \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )^{4}+4 i \pi x \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )^{3}+4 i \ln \left (\ln \left (\ln \left (x -4\right )\right )\right ) \pi \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )^{3}+4 i \ln \relax (x ) \pi \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )^{3}-8 i \ln \relax (2) \pi \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )^{3}-12 i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )^{2}-12 i \pi \,\mathrm {csgn}\left (\frac {i}{\ln \left (\ln \left (x -4\right )\right )}\right ) \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )^{2}+8 \ln \relax (x ) \ln \left (\ln \left (\ln \left (x -4\right )\right )\right )+8 x \ln \left (\ln \left (\ln \left (x -4\right )\right )\right )-8 i \ln \relax (2) \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (\ln \left (x -4\right )\right )}\right ) \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )+4 i \pi x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (\ln \left (x -4\right )\right )}\right ) \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )+4 i \ln \relax (x ) \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (\ln \left (x -4\right )\right )}\right ) \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )+4 i \ln \left (\ln \left (\ln \left (x -4\right )\right )\right ) \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (\ln \left (x -4\right )\right )}\right ) \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )-16 \ln \relax (2) \ln \left (\ln \left (\ln \left (x -4\right )\right )\right )+24 \ln \left (\ln \left (\ln \left (x -4\right )\right )\right )+4 \ln \left (\ln \left (\ln \left (x -4\right )\right )\right )^{2}+2 \pi ^{2} \mathrm {csgn}\left (\frac {i}{\ln \left (\ln \left (x -4\right )\right )}\right ) \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )^{5}+2 \pi ^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )^{5}-\pi ^{2} \mathrm {csgn}\left (\frac {i}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )^{4}+12 i \pi \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )^{3}-\pi ^{2} \mathrm {csgn}\left (\frac {i}{\ln \left (\ln \left (x -4\right )\right )}\right )^{2} \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )^{4}-\pi ^{2} \mathrm {csgn}\left (\frac {i}{x \ln \left (\ln \left (x -4\right )\right )}\right )^{6}}\) | \(1024\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.34, size = 73, normalized size = 2.15 \begin {gather*} -\frac {x^{2}}{2 \, x^{2} - 2 \, x {\left (2 \, \log \relax (2) - 3\right )} + 4 \, \log \relax (2)^{2} + 2 \, {\left (x - 2 \, \log \relax (2) + 3\right )} \log \relax (x) + \log \relax (x)^{2} + 2 \, {\left (x - 2 \, \log \relax (2) + \log \relax (x) + 3\right )} \log \left (\log \left (\log \left (x - 4\right )\right )\right ) + \log \left (\log \left (\log \left (x - 4\right )\right )\right )^{2} - 12 \, \log \relax (2) + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {6\,x^2-\ln \left (\frac {4}{x\,\ln \left (\ln \left (x-4\right )\right )}\right )\,\left (2\,x^2-\ln \left (x-4\right )\,\ln \left (\ln \left (x-4\right )\right )\,\left (2\,x^3+2\,x^2-40\,x\right )\right )+2\,x^3+\ln \left (x-4\right )\,\ln \left (\ln \left (x-4\right )\right )\,\left (-4\,x^3+4\,x^2+48\,x\right )+\ln \left (x-4\right )\,\ln \left (\ln \left (x-4\right )\right )\,{\ln \left (\frac {4}{x\,\ln \left (\ln \left (x-4\right )\right )}\right )}^2\,\left (8\,x-2\,x^2\right )}{\ln \left (x-4\right )\,\ln \left (\ln \left (x-4\right )\right )\,\left (x-4\right )\,{\ln \left (\frac {4}{x\,\ln \left (\ln \left (x-4\right )\right )}\right )}^4+\ln \left (x-4\right )\,\ln \left (\ln \left (x-4\right )\right )\,\left (-4\,x^2+4\,x+48\right )\,{\ln \left (\frac {4}{x\,\ln \left (\ln \left (x-4\right )\right )}\right )}^3-\ln \left (x-4\right )\,\ln \left (\ln \left (x-4\right )\right )\,\left (-8\,x^3-4\,x^2+90\,x+216\right )\,{\ln \left (\frac {4}{x\,\ln \left (\ln \left (x-4\right )\right )}\right )}^2+\ln \left (x-4\right )\,\ln \left (\ln \left (x-4\right )\right )\,\left (-8\,x^4-16\,x^3+84\,x^2+324\,x+432\right )\,\ln \left (\frac {4}{x\,\ln \left (\ln \left (x-4\right )\right )}\right )-\ln \left (x-4\right )\,\ln \left (\ln \left (x-4\right )\right )\,\left (-4\,x^5-8\,x^4+24\,x^3+180\,x^2+351\,x+324\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.94, size = 46, normalized size = 1.35 \begin {gather*} - \frac {x^{2}}{2 x^{2} + 6 x + \left (- 2 x - 6\right ) \log {\left (\frac {4}{x \log {\left (\log {\left (x - 4 \right )} \right )}} \right )} + \log {\left (\frac {4}{x \log {\left (\log {\left (x - 4 \right )} \right )}} \right )}^{2} + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________