3.85.56 \(\int \frac {-4 x^2+\log ^2(2)}{4 x^2} \, dx\)

Optimal. Leaf size=19 \[ -\frac {19}{12}-\frac {\left (x+\frac {\log (2)}{2}\right )^2}{x} \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 15, normalized size of antiderivative = 0.79, number of steps used = 3, number of rules used = 2, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {12, 14} \begin {gather*} -x-\frac {\log ^2(2)}{4 x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-4*x^2 + Log[2]^2)/(4*x^2),x]

[Out]

-x - Log[2]^2/(4*x)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {-4 x^2+\log ^2(2)}{x^2} \, dx\\ &=\frac {1}{4} \int \left (-4+\frac {\log ^2(2)}{x^2}\right ) \, dx\\ &=-x-\frac {\log ^2(2)}{4 x}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 15, normalized size = 0.79 \begin {gather*} -x-\frac {\log ^2(2)}{4 x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-4*x^2 + Log[2]^2)/(4*x^2),x]

[Out]

-x - Log[2]^2/(4*x)

________________________________________________________________________________________

fricas [A]  time = 1.01, size = 15, normalized size = 0.79 \begin {gather*} -\frac {4 \, x^{2} + \log \relax (2)^{2}}{4 \, x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(log(2)^2-4*x^2)/x^2,x, algorithm="fricas")

[Out]

-1/4*(4*x^2 + log(2)^2)/x

________________________________________________________________________________________

giac [A]  time = 0.12, size = 13, normalized size = 0.68 \begin {gather*} -x - \frac {\log \relax (2)^{2}}{4 \, x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(log(2)^2-4*x^2)/x^2,x, algorithm="giac")

[Out]

-x - 1/4*log(2)^2/x

________________________________________________________________________________________

maple [A]  time = 0.03, size = 14, normalized size = 0.74




method result size



default \(-x -\frac {\ln \relax (2)^{2}}{4 x}\) \(14\)
risch \(-x -\frac {\ln \relax (2)^{2}}{4 x}\) \(14\)
gosper \(-\frac {\ln \relax (2)^{2}+4 x^{2}}{4 x}\) \(16\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/4*(ln(2)^2-4*x^2)/x^2,x,method=_RETURNVERBOSE)

[Out]

-x-1/4*ln(2)^2/x

________________________________________________________________________________________

maxima [A]  time = 0.48, size = 13, normalized size = 0.68 \begin {gather*} -x - \frac {\log \relax (2)^{2}}{4 \, x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(log(2)^2-4*x^2)/x^2,x, algorithm="maxima")

[Out]

-x - 1/4*log(2)^2/x

________________________________________________________________________________________

mupad [B]  time = 0.03, size = 13, normalized size = 0.68 \begin {gather*} -x-\frac {{\ln \relax (2)}^2}{4\,x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(2)^2/4 - x^2)/x^2,x)

[Out]

- x - log(2)^2/(4*x)

________________________________________________________________________________________

sympy [A]  time = 0.08, size = 10, normalized size = 0.53 \begin {gather*} - x - \frac {\log {\relax (2 )}^{2}}{4 x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(ln(2)**2-4*x**2)/x**2,x)

[Out]

-x - log(2)**2/(4*x)

________________________________________________________________________________________