Optimal. Leaf size=31 \[ 3 e^{-x} \left (\frac {8}{4-\frac {3 (1-x)}{4}}-e^x (3+x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.22, antiderivative size = 18, normalized size of antiderivative = 0.58, number of steps used = 4, number of rules used = 3, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.081, Rules used = {27, 6742, 2197} \begin {gather*} \frac {96 e^{-x}}{3 x+13}-3 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 2197
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (-1536-288 x+e^x \left (-507-234 x-27 x^2\right )\right )}{(13+3 x)^2} \, dx\\ &=\int \left (-3-\frac {96 e^{-x} (16+3 x)}{(13+3 x)^2}\right ) \, dx\\ &=-3 x-96 \int \frac {e^{-x} (16+3 x)}{(13+3 x)^2} \, dx\\ &=-3 x+\frac {96 e^{-x}}{13+3 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 18, normalized size = 0.58 \begin {gather*} -3 \left (x-\frac {32 e^{-x}}{13+3 x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 27, normalized size = 0.87 \begin {gather*} -\frac {3 \, {\left ({\left (3 \, x^{2} + 13 \, x\right )} e^{x} - 32\right )} e^{\left (-x\right )}}{3 \, x + 13} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 24, normalized size = 0.77 \begin {gather*} -\frac {3 \, {\left (3 \, x^{2} + 13 \, x - 32 \, e^{\left (-x\right )}\right )}}{3 \, x + 13} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.42, size = 18, normalized size = 0.58
method | result | size |
default | \(-3 x +\frac {96 \,{\mathrm e}^{-x}}{3 x +13}\) | \(18\) |
risch | \(-3 x +\frac {96 \,{\mathrm e}^{-x}}{3 x +13}\) | \(18\) |
norman | \(\frac {\left (96+169 \,{\mathrm e}^{x}-9 \,{\mathrm e}^{x} x^{2}\right ) {\mathrm e}^{-x}}{3 x +13}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {512 \, e^{\frac {13}{3}} E_{2}\left (x + \frac {13}{3}\right )}{3 \, x + 13} - \frac {3 \, {\left (9 \, x^{3} + 78 \, x^{2} - 96 \, x e^{\left (-x\right )} + 169 \, x\right )}}{9 \, x^{2} + 78 \, x + 169} + 3 \, \int \frac {96 \, {\left (3 \, x - 13\right )} e^{\left (-x\right )}}{27 \, x^{3} + 351 \, x^{2} + 1521 \, x + 2197}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 18, normalized size = 0.58 \begin {gather*} \frac {96}{13\,{\mathrm {e}}^x+3\,x\,{\mathrm {e}}^x}-3\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 12, normalized size = 0.39 \begin {gather*} - 3 x + \frac {96 e^{- x}}{3 x + 13} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________