Optimal. Leaf size=30 \[ \log \left (\frac {x-x^2+\log (x)}{-e^x+\frac {3 x}{\log (3)}-\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-3 x+3 x^3+\left (-x+x^2\right ) \log (3)+e^x \left (1+x-3 x^2+x^3\right ) \log (3)+\left (3 x-e^x x \log (3)+\left (x-2 x^2\right ) \log (3)\right ) \log (x)}{-3 x^3+3 x^4+e^x \left (x^2-x^3\right ) \log (3)+\left (-3 x^2+e^x x \log (3)+\left (x^2-x^3\right ) \log (3)\right ) \log (x)+x \log (3) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(-1+x) \left (-e^x \log (3)+x^2 \left (3+e^x \log (3)\right )+x \left (3+\log (3)-e^x \log (9)\right )\right )-x \left (-3-\log (3)+e^x \log (3)+x \log (9)\right ) \log (x)}{x ((-1+x) x-\log (x)) \left (3 x-e^x \log (3)-\log (3) \log (x)\right )} \, dx\\ &=\int \left (\frac {\log (3)+x^3 \log (3)-x \log (3) \left (1-\frac {\log (9)}{\log (3)}\right )-x^2 \log (3) \left (1+\frac {\log (9)}{\log (3)}\right )-x \log (3) \log (x)}{x \log (3) \left (x-x^2+\log (x)\right )}+\frac {\log ^2(3)-x \log (27)+x^2 \log (27)-x \log ^2(3) \log (x)}{x \log (3) \left (3 x-e^x \log (3)-\log (3) \log (x)\right )}\right ) \, dx\\ &=\frac {\int \frac {\log (3)+x^3 \log (3)-x \log (3) \left (1-\frac {\log (9)}{\log (3)}\right )-x^2 \log (3) \left (1+\frac {\log (9)}{\log (3)}\right )-x \log (3) \log (x)}{x \left (x-x^2+\log (x)\right )} \, dx}{\log (3)}+\frac {\int \frac {\log ^2(3)-x \log (27)+x^2 \log (27)-x \log ^2(3) \log (x)}{x \left (3 x-e^x \log (3)-\log (3) \log (x)\right )} \, dx}{\log (3)}\\ &=\frac {\int \frac {-\left ((-1+x) \left (-\log (3)+x^2 \log (3)-x \log (9)\right )\right )+x \log (3) \log (x)}{x ((-1+x) x-\log (x))} \, dx}{\log (3)}+\frac {\int \left (\frac {\log ^2(3)}{x \left (3 x-e^x \log (3)-\log (3) \log (x)\right )}-\frac {\log (27)}{3 x-e^x \log (3)-\log (3) \log (x)}+\frac {x \log (27)}{3 x-e^x \log (3)-\log (3) \log (x)}+\frac {\log ^2(3) \log (x)}{-3 x+e^x \log (3)+\log (3) \log (x)}\right ) \, dx}{\log (3)}\\ &=\frac {\int \left (-\log (3)+\frac {(-1+x) (\log (3)+x \log (9))}{x \left (-x+x^2-\log (x)\right )}\right ) \, dx}{\log (3)}+\log (3) \int \frac {1}{x \left (3 x-e^x \log (3)-\log (3) \log (x)\right )} \, dx+\log (3) \int \frac {\log (x)}{-3 x+e^x \log (3)+\log (3) \log (x)} \, dx-\frac {\log (27) \int \frac {1}{3 x-e^x \log (3)-\log (3) \log (x)} \, dx}{\log (3)}+\frac {\log (27) \int \frac {x}{3 x-e^x \log (3)-\log (3) \log (x)} \, dx}{\log (3)}\\ &=-x+\frac {\int \frac {(-1+x) (\log (3)+x \log (9))}{x \left (-x+x^2-\log (x)\right )} \, dx}{\log (3)}+\log (3) \int \frac {1}{x \left (3 x-e^x \log (3)-\log (3) \log (x)\right )} \, dx+\log (3) \int \frac {\log (x)}{-3 x+e^x \log (3)+\log (3) \log (x)} \, dx-\frac {\log (27) \int \frac {1}{3 x-e^x \log (3)-\log (3) \log (x)} \, dx}{\log (3)}+\frac {\log (27) \int \frac {x}{3 x-e^x \log (3)-\log (3) \log (x)} \, dx}{\log (3)}\\ &=-x+\frac {\int \left (-\frac {\log (3)}{x \left (-x+x^2-\log (x)\right )}+\frac {x \log (9)}{-x+x^2-\log (x)}+\frac {\log (3) \left (1-\frac {\log (9)}{\log (3)}\right )}{-x+x^2-\log (x)}\right ) \, dx}{\log (3)}+\log (3) \int \frac {1}{x \left (3 x-e^x \log (3)-\log (3) \log (x)\right )} \, dx+\log (3) \int \frac {\log (x)}{-3 x+e^x \log (3)+\log (3) \log (x)} \, dx-\frac {\log (27) \int \frac {1}{3 x-e^x \log (3)-\log (3) \log (x)} \, dx}{\log (3)}+\frac {\log (27) \int \frac {x}{3 x-e^x \log (3)-\log (3) \log (x)} \, dx}{\log (3)}\\ &=-x+\log (3) \int \frac {1}{x \left (3 x-e^x \log (3)-\log (3) \log (x)\right )} \, dx+\log (3) \int \frac {\log (x)}{-3 x+e^x \log (3)+\log (3) \log (x)} \, dx+\frac {\log (9) \int \frac {x}{-x+x^2-\log (x)} \, dx}{\log (3)}-\frac {\log (27) \int \frac {1}{3 x-e^x \log (3)-\log (3) \log (x)} \, dx}{\log (3)}+\frac {\log (27) \int \frac {x}{3 x-e^x \log (3)-\log (3) \log (x)} \, dx}{\log (3)}-\int \frac {1}{-x+x^2-\log (x)} \, dx-\int \frac {1}{x \left (-x+x^2-\log (x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.49, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {-3 x+3 x^3+\left (-x+x^2\right ) \log (3)+e^x \left (1+x-3 x^2+x^3\right ) \log (3)+\left (3 x-e^x x \log (3)+\left (x-2 x^2\right ) \log (3)\right ) \log (x)}{-3 x^3+3 x^4+e^x \left (x^2-x^3\right ) \log (3)+\left (-3 x^2+e^x x \log (3)+\left (x^2-x^3\right ) \log (3)\right ) \log (x)+x \log (3) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 28, normalized size = 0.93 \begin {gather*} \log \left (-x^{2} + x + \log \relax (x)\right ) - \log \left (e^{x} \log \relax (3) + \log \relax (3) \log \relax (x) - 3 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.87, size = 32, normalized size = 1.07 \begin {gather*} \log \left (x^{2} - x - \log \relax (x)\right ) - \log \left (-e^{x} \log \relax (3) - \log \relax (3) \log \relax (x) + 3 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 32, normalized size = 1.07
method | result | size |
risch | \(\ln \left (\ln \relax (x )+x -x^{2}\right )-\ln \left (\ln \relax (x )+\frac {\ln \relax (3) {\mathrm e}^{x}-3 x}{\ln \relax (3)}\right )\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 33, normalized size = 1.10 \begin {gather*} \log \left (-x^{2} + x + \log \relax (x)\right ) - \log \left (\frac {e^{x} \log \relax (3) + \log \relax (3) \log \relax (x) - 3 \, x}{\log \relax (3)}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {\ln \relax (x)\,\left (3\,x+\ln \relax (3)\,\left (x-2\,x^2\right )-x\,{\mathrm {e}}^x\,\ln \relax (3)\right )-3\,x+3\,x^3-\ln \relax (3)\,\left (x-x^2\right )+{\mathrm {e}}^x\,\ln \relax (3)\,\left (x^3-3\,x^2+x+1\right )}{\ln \relax (x)\,\left (\ln \relax (3)\,\left (x^2-x^3\right )-3\,x^2+x\,{\mathrm {e}}^x\,\ln \relax (3)\right )-3\,x^3+3\,x^4+{\mathrm {e}}^x\,\ln \relax (3)\,\left (x^2-x^3\right )+x\,\ln \relax (3)\,{\ln \relax (x)}^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.47, size = 27, normalized size = 0.90 \begin {gather*} - \log {\left (\frac {- 3 x + \log {\relax (3 )} \log {\relax (x )}}{\log {\relax (3 )}} + e^{x} \right )} + \log {\left (- x^{2} + x + \log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________