Optimal. Leaf size=20 \[ x \left (\frac {x}{3+x}\right )^{x (-2+x \log (-3+x))} \]
________________________________________________________________________________________
Rubi [F] time = 23.29, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-2 x \log \left (\frac {x}{3+x}\right )+x^2 \log (-3+x) \log \left (\frac {x}{3+x}\right )\right ) \left (-9+18 x-5 x^2+\left (18 x+x^3+x^4\right ) \log \left (\frac {x}{3+x}\right )+\log (-3+x) \left (-9 x^2+3 x^3+\left (-18 x^2+2 x^4\right ) \log \left (\frac {x}{3+x}\right )\right )\right )}{-9+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {9 \left (\frac {x}{3+x}\right )^{x (-2+x \log (-3+x))}}{-9+x^2}+\frac {18 x \left (\frac {x}{3+x}\right )^{x (-2+x \log (-3+x))}}{-9+x^2}-\frac {5 x^2 \left (\frac {x}{3+x}\right )^{x (-2+x \log (-3+x))}}{-9+x^2}-\frac {9 x^2 \left (\frac {x}{3+x}\right )^{x (-2+x \log (-3+x))} \log (-3+x)}{-9+x^2}+\frac {3 x^3 \left (\frac {x}{3+x}\right )^{x (-2+x \log (-3+x))} \log (-3+x)}{-9+x^2}+\frac {x \left (\frac {x}{3+x}\right )^{x (-2+x \log (-3+x))} \left (6-2 x+x^2-6 x \log (-3+x)+2 x^2 \log (-3+x)\right ) \log \left (\frac {x}{3+x}\right )}{-3+x}\right ) \, dx\\ &=3 \int \frac {x^3 \left (\frac {x}{3+x}\right )^{x (-2+x \log (-3+x))} \log (-3+x)}{-9+x^2} \, dx-5 \int \frac {x^2 \left (\frac {x}{3+x}\right )^{x (-2+x \log (-3+x))}}{-9+x^2} \, dx-9 \int \frac {\left (\frac {x}{3+x}\right )^{x (-2+x \log (-3+x))}}{-9+x^2} \, dx-9 \int \frac {x^2 \left (\frac {x}{3+x}\right )^{x (-2+x \log (-3+x))} \log (-3+x)}{-9+x^2} \, dx+18 \int \frac {x \left (\frac {x}{3+x}\right )^{x (-2+x \log (-3+x))}}{-9+x^2} \, dx+\int \frac {x \left (\frac {x}{3+x}\right )^{x (-2+x \log (-3+x))} \left (6-2 x+x^2-6 x \log (-3+x)+2 x^2 \log (-3+x)\right ) \log \left (\frac {x}{3+x}\right )}{-3+x} \, dx\\ &=3 \int \left (\frac {9 \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x)}{2 (-3+x)}+x \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x)+\frac {9 \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x)}{2 (3+x)}\right ) \, dx-5 \int \left (\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}+\frac {9 \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{-9+x^2}\right ) \, dx-9 \int \left (-\frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{6 (3-x)}-\frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{6 (3+x)}\right ) \, dx-9 \int \left (\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x)+\frac {9 \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x)}{-9+x^2}\right ) \, dx+18 \int \left (\frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{2 (-3+x)}+\frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{2 (3+x)}\right ) \, dx+\int \frac {x \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \left (-6+2 x-x^2+6 x \log (-3+x)-2 x^2 \log (-3+x)\right ) \log \left (\frac {x}{3+x}\right )}{3-x} \, dx\\ &=\frac {3}{2} \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{3-x} \, dx+\frac {3}{2} \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{3+x} \, dx+3 \int x \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x) \, dx-5 \int \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \, dx+9 \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{-3+x} \, dx+9 \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{3+x} \, dx-9 \int \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x) \, dx+\frac {27}{2} \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x)}{-3+x} \, dx+\frac {27}{2} \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x)}{3+x} \, dx-45 \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{-9+x^2} \, dx-81 \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x)}{-9+x^2} \, dx+\int \left (\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \left (6-2 x+x^2-6 x \log (-3+x)+2 x^2 \log (-3+x)\right ) \log \left (\frac {x}{3+x}\right )+\frac {3 \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \left (6-2 x+x^2-6 x \log (-3+x)+2 x^2 \log (-3+x)\right ) \log \left (\frac {x}{3+x}\right )}{-3+x}\right ) \, dx\\ &=\frac {3}{2} \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{3-x} \, dx+\frac {3}{2} \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{3+x} \, dx+3 \int x \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x) \, dx+3 \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \left (6-2 x+x^2-6 x \log (-3+x)+2 x^2 \log (-3+x)\right ) \log \left (\frac {x}{3+x}\right )}{-3+x} \, dx-5 \int \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \, dx+9 \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{-3+x} \, dx+9 \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{3+x} \, dx-9 \int \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x) \, dx+\frac {27}{2} \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x)}{-3+x} \, dx+\frac {27}{2} \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x)}{3+x} \, dx-45 \int \left (-\frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{6 (3-x)}-\frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{6 (3+x)}\right ) \, dx-81 \int \left (\frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x)}{6 (-3+x)}-\frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x)}{6 (3+x)}\right ) \, dx+\int \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \left (6-2 x+x^2-6 x \log (-3+x)+2 x^2 \log (-3+x)\right ) \log \left (\frac {x}{3+x}\right ) \, dx\\ &=\frac {3}{2} \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{3-x} \, dx+\frac {3}{2} \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{3+x} \, dx+3 \int x \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x) \, dx+3 \int \left (\frac {6 \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log \left (\frac {x}{3+x}\right )}{-3+x}-\frac {2 x \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log \left (\frac {x}{3+x}\right )}{-3+x}+\frac {x^2 \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log \left (\frac {x}{3+x}\right )}{-3+x}-\frac {6 x \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x) \log \left (\frac {x}{3+x}\right )}{-3+x}+\frac {2 x^2 \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x) \log \left (\frac {x}{3+x}\right )}{-3+x}\right ) \, dx-5 \int \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \, dx+\frac {15}{2} \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{3-x} \, dx+\frac {15}{2} \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{3+x} \, dx+9 \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{-3+x} \, dx+9 \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{3+x} \, dx-9 \int \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x) \, dx+2 \left (\frac {27}{2} \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x)}{3+x} \, dx\right )+\int \left (6 \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log \left (\frac {x}{3+x}\right )-2 x \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log \left (\frac {x}{3+x}\right )+x^2 \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log \left (\frac {x}{3+x}\right )-6 x \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x) \log \left (\frac {x}{3+x}\right )+2 x^2 \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x) \log \left (\frac {x}{3+x}\right )\right ) \, dx\\ &=\frac {3}{2} \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{3-x} \, dx+\frac {3}{2} \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{3+x} \, dx-2 \int x \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log \left (\frac {x}{3+x}\right ) \, dx+2 \int x^2 \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x) \log \left (\frac {x}{3+x}\right ) \, dx+3 \int x \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x) \, dx+3 \int \frac {x^2 \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log \left (\frac {x}{3+x}\right )}{-3+x} \, dx-5 \int \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \, dx+6 \int \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log \left (\frac {x}{3+x}\right ) \, dx-6 \int \frac {x \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log \left (\frac {x}{3+x}\right )}{-3+x} \, dx-6 \int x \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x) \log \left (\frac {x}{3+x}\right ) \, dx+6 \int \frac {x^2 \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x) \log \left (\frac {x}{3+x}\right )}{-3+x} \, dx+\frac {15}{2} \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{3-x} \, dx+\frac {15}{2} \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{3+x} \, dx+9 \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{-3+x} \, dx+9 \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)}}{3+x} \, dx-9 \int \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x) \, dx+2 \left (\frac {27}{2} \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x)}{3+x} \, dx\right )+18 \int \frac {\left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log \left (\frac {x}{3+x}\right )}{-3+x} \, dx-18 \int \frac {x \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log (-3+x) \log \left (\frac {x}{3+x}\right )}{-3+x} \, dx+\int x^2 \left (\frac {x}{3+x}\right )^{-2 x+x^2 \log (-3+x)} \log \left (\frac {x}{3+x}\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 29, normalized size = 1.45 \begin {gather*} (-3+x)^{x^2 \log \left (\frac {x}{3+x}\right )} x \left (\frac {x}{3+x}\right )^{-2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.55, size = 31, normalized size = 1.55 \begin {gather*} x e^{\left (x^{2} \log \left (x - 3\right ) \log \left (\frac {x}{x + 3}\right ) - 2 \, x \log \left (\frac {x}{x + 3}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (5 \, x^{2} - {\left (3 \, x^{3} - 9 \, x^{2} + 2 \, {\left (x^{4} - 9 \, x^{2}\right )} \log \left (\frac {x}{x + 3}\right )\right )} \log \left (x - 3\right ) - {\left (x^{4} + x^{3} + 18 \, x\right )} \log \left (\frac {x}{x + 3}\right ) - 18 \, x + 9\right )} e^{\left (x^{2} \log \left (x - 3\right ) \log \left (\frac {x}{x + 3}\right ) - 2 \, x \log \left (\frac {x}{x + 3}\right )\right )}}{x^{2} - 9}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.53, size = 191, normalized size = 9.55
method | result | size |
risch | \(x \left (x -3\right )^{-\frac {x^{2} \left (i \pi \,\mathrm {csgn}\left (\frac {i x}{3+x}\right )-i \pi \,\mathrm {csgn}\left (i x \right )-i \pi \,\mathrm {csgn}\left (\frac {i}{3+x}\right )+i \pi \,\mathrm {csgn}\left (\frac {i x}{3+x}\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i}{3+x}\right )-2 \ln \relax (x )+2 \ln \left (3+x \right )\right )}{2}} {\mathrm e}^{x \left (i \pi \mathrm {csgn}\left (\frac {i x}{3+x}\right )^{3}-i \pi \mathrm {csgn}\left (\frac {i x}{3+x}\right )^{2} \mathrm {csgn}\left (i x \right )-i \pi \mathrm {csgn}\left (\frac {i x}{3+x}\right )^{2} \mathrm {csgn}\left (\frac {i}{3+x}\right )+i \pi \,\mathrm {csgn}\left (\frac {i x}{3+x}\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i}{3+x}\right )-2 \ln \relax (x )+2 \ln \left (3+x \right )\right )}\) | \(191\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 39, normalized size = 1.95 \begin {gather*} x e^{\left (-x^{2} \log \left (x + 3\right ) \log \left (x - 3\right ) + x^{2} \log \left (x - 3\right ) \log \relax (x) + 2 \, x \log \left (x + 3\right ) - 2 \, x \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.50, size = 31, normalized size = 1.55 \begin {gather*} \frac {x\,{\left (x-3\right )}^{x^2\,\ln \left (\frac {x}{x+3}\right )}}{{\left (\frac {x}{x+3}\right )}^{2\,x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 16.39, size = 27, normalized size = 1.35 \begin {gather*} x e^{x^{2} \log {\left (\frac {x}{x + 3} \right )} \log {\left (x - 3 \right )} - 2 x \log {\left (\frac {x}{x + 3} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________