Optimal. Leaf size=24 \[ -5+2 e^{-\frac {\left (3-\frac {19 x}{20}\right )^2}{\log ^2(x)}} x \log (x) \]
________________________________________________________________________________________
Rubi [B] time = 0.22, antiderivative size = 81, normalized size of antiderivative = 3.38, number of steps used = 2, number of rules used = 2, integrand size = 62, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.032, Rules used = {12, 2288} \begin {gather*} \frac {2 e^{-\frac {361 x^2-2280 x+3600}{400 \log ^2(x)}} \left (361 x^2+19 \left (60 x-19 x^2\right ) \log (x)-2280 x+3600\right )}{\left (\frac {361 x^2-2280 x+3600}{x \log ^3(x)}+\frac {19 (60-19 x)}{\log ^2(x)}\right ) \log ^2(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{100} \int \frac {e^{-\frac {3600-2280 x+361 x^2}{400 \log ^2(x)}} \left (3600-2280 x+361 x^2+\left (1140 x-361 x^2\right ) \log (x)+200 \log ^2(x)+200 \log ^3(x)\right )}{\log ^2(x)} \, dx\\ &=\frac {2 e^{-\frac {3600-2280 x+361 x^2}{400 \log ^2(x)}} \left (3600-2280 x+361 x^2+19 \left (60 x-19 x^2\right ) \log (x)\right )}{\left (\frac {3600-2280 x+361 x^2}{x \log ^3(x)}+\frac {19 (60-19 x)}{\log ^2(x)}\right ) \log ^2(x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 22, normalized size = 0.92 \begin {gather*} 2 e^{-\frac {(60-19 x)^2}{400 \log ^2(x)}} x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 22, normalized size = 0.92 \begin {gather*} 2 \, x e^{\left (-\frac {361 \, x^{2} - 2280 \, x + 3600}{400 \, \log \relax (x)^{2}}\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 20, normalized size = 0.83
method | result | size |
risch | \(2 \ln \relax (x ) x \,{\mathrm e}^{-\frac {\left (19 x -60\right )^{2}}{400 \ln \relax (x )^{2}}}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{100} \, \int \frac {{\left (200 \, \log \relax (x)^{3} + 361 \, x^{2} - 19 \, {\left (19 \, x^{2} - 60 \, x\right )} \log \relax (x) + 200 \, \log \relax (x)^{2} - 2280 \, x + 3600\right )} e^{\left (-\frac {361 \, x^{2} - 2280 \, x + 3600}{400 \, \log \relax (x)^{2}}\right )}}{\log \relax (x)^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.51, size = 22, normalized size = 0.92 \begin {gather*} 2\,x\,{\mathrm {e}}^{-\frac {361\,x^2-2280\,x+3600}{400\,{\ln \relax (x)}^2}}\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 4.01, size = 26, normalized size = 1.08 \begin {gather*} 2 x e^{- \frac {\frac {361 x^{2}}{400} - \frac {57 x}{10} + 9}{\log {\relax (x )}^{2}}} \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________