Optimal. Leaf size=20 \[ \left (-5+\frac {16}{e^5}+4 e^{10}+\frac {\log (5)}{x}\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 30, normalized size of antiderivative = 1.50, number of steps used = 3, number of rules used = 3, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {12, 186, 37} \begin {gather*} \frac {\left (\left (16-5 e^5+4 e^{15}\right ) x+e^5 \log (5)\right )^2}{e^{10} x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 37
Rule 186
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {\left (-32 x+10 e^5 x-8 e^{15} x\right ) \log (5)-2 e^5 \log ^2(5)}{x^3} \, dx}{e^5}\\ &=\frac {\int \frac {-2 \left (16-5 e^5+4 e^{15}\right ) x \log (5)-2 e^5 \log ^2(5)}{x^3} \, dx}{e^5}\\ &=\frac {\left (\left (16-5 e^5+4 e^{15}\right ) x+e^5 \log (5)\right )^2}{e^{10} x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 36, normalized size = 1.80 \begin {gather*} -\frac {2 \log (5) \left (\frac {-16+5 e^5-4 e^{15}}{x}-\frac {e^5 \log (5)}{2 x^2}\right )}{e^5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.33, size = 32, normalized size = 1.60 \begin {gather*} \frac {{\left (e^{5} \log \relax (5)^{2} + 2 \, {\left (4 \, x e^{15} - 5 \, x e^{5} + 16 \, x\right )} \log \relax (5)\right )} e^{\left (-5\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 33, normalized size = 1.65 \begin {gather*} \frac {{\left (8 \, x e^{15} \log \relax (5) - 10 \, x e^{5} \log \relax (5) + e^{5} \log \relax (5)^{2} + 32 \, x \log \relax (5)\right )} e^{\left (-5\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 31, normalized size = 1.55
method | result | size |
norman | \(\frac {\ln \relax (5)^{2}+2 \left (-5 \,{\mathrm e}^{5}+4 \,{\mathrm e}^{15}+16\right ) \ln \relax (5) {\mathrm e}^{-5} x}{x^{2}}\) | \(31\) |
gosper | \(\frac {\ln \relax (5) \left (8 x \,{\mathrm e}^{15}+{\mathrm e}^{5} \ln \relax (5)-10 x \,{\mathrm e}^{5}+32 x \right ) {\mathrm e}^{-5}}{x^{2}}\) | \(32\) |
default | \(2 \,{\mathrm e}^{-5} \ln \relax (5) \left (\frac {{\mathrm e}^{5} \ln \relax (5)}{2 x^{2}}-\frac {5 \,{\mathrm e}^{5}-4 \,{\mathrm e}^{15}-16}{x}\right )\) | \(34\) |
risch | \(\frac {{\mathrm e}^{-5} \left (\left (8 \ln \relax (5) {\mathrm e}^{15}-10 \,{\mathrm e}^{5} \ln \relax (5)+32 \ln \relax (5)\right ) x +{\mathrm e}^{5} \ln \relax (5)^{2}\right )}{x^{2}}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 29, normalized size = 1.45 \begin {gather*} \frac {{\left (2 \, x {\left (4 \, e^{15} - 5 \, e^{5} + 16\right )} \log \relax (5) + e^{5} \log \relax (5)^{2}\right )} e^{\left (-5\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.13, size = 30, normalized size = 1.50 \begin {gather*} \frac {{\ln \relax (5)}^2+x\,{\mathrm {e}}^{-5}\,\left (32\,\ln \relax (5)-10\,{\mathrm {e}}^5\,\ln \relax (5)+8\,{\mathrm {e}}^{15}\,\ln \relax (5)\right )}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.19, size = 39, normalized size = 1.95 \begin {gather*} - \frac {x \left (- 8 e^{15} \log {\relax (5 )} - 32 \log {\relax (5 )} + 10 e^{5} \log {\relax (5 )}\right ) - e^{5} \log {\relax (5 )}^{2}}{x^{2} e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________