Optimal. Leaf size=26 \[ \frac {1}{16} \left (6+x-\left (\frac {5}{2}+\frac {25 \log \left (x^2\right )}{e^5}\right )^2\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.20, antiderivative size = 131, normalized size of antiderivative = 5.04, number of steps used = 15, number of rules used = 8, integrand size = 81, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.099, Rules used = {12, 14, 2346, 2301, 2295, 2302, 30, 2296} \begin {gather*} \frac {x^2}{16}+\frac {390625 \log ^4\left (x^2\right )}{16 e^{20}}+\frac {78125 \log ^3\left (x^2\right )}{8 e^{15}}-\frac {625 x \log ^2\left (x^2\right )}{8 e^{10}}+\frac {31875 \log ^2\left (x^2\right )}{32 e^{10}}-\frac {125 \left (20+e^5\right ) x \log \left (x^2\right )}{8 e^{10}}+\frac {625 x \log \left (x^2\right )}{2 e^{10}}-\frac {\left (1000+e^5\right ) x}{32 e^5}+\frac {125 \left (20+e^5\right ) x}{4 e^{10}}-\frac {625 x}{e^{10}}+\frac {125 \log (x)}{16 e^5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 30
Rule 2295
Rule 2296
Rule 2301
Rule 2302
Rule 2346
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^{15} (250-1000 x)+e^{20} \left (-x+4 x^2\right )+\left (e^{10} (127500-10000 x)-500 e^{15} x\right ) \log \left (x^2\right )+\left (1875000 e^5-2500 e^{10} x\right ) \log ^2\left (x^2\right )+6250000 \log ^3\left (x^2\right )}{x} \, dx}{32 e^{20}}\\ &=\frac {\int \left (\frac {e^{15} \left (250-\left (1000+e^5\right ) x+4 e^5 x^2\right )}{x}+\frac {500 e^{10} \left (255-\left (20+e^5\right ) x\right ) \log \left (x^2\right )}{x}-\frac {2500 e^5 \left (-750+e^5 x\right ) \log ^2\left (x^2\right )}{x}+\frac {6250000 \log ^3\left (x^2\right )}{x}\right ) \, dx}{32 e^{20}}\\ &=\frac {390625 \int \frac {\log ^3\left (x^2\right )}{x} \, dx}{2 e^{20}}-\frac {625 \int \frac {\left (-750+e^5 x\right ) \log ^2\left (x^2\right )}{x} \, dx}{8 e^{15}}+\frac {125 \int \frac {\left (255+\left (-20-e^5\right ) x\right ) \log \left (x^2\right )}{x} \, dx}{8 e^{10}}+\frac {\int \frac {250-\left (1000+e^5\right ) x+4 e^5 x^2}{x} \, dx}{32 e^5}\\ &=\frac {390625 \operatorname {Subst}\left (\int x^3 \, dx,x,\log \left (x^2\right )\right )}{4 e^{20}}+\frac {234375 \int \frac {\log ^2\left (x^2\right )}{x} \, dx}{4 e^{15}}-\frac {625 \int \log ^2\left (x^2\right ) \, dx}{8 e^{10}}+\frac {31875 \int \frac {\log \left (x^2\right )}{x} \, dx}{8 e^{10}}+\frac {\int \left (-1000-e^5+\frac {250}{x}+4 e^5 x\right ) \, dx}{32 e^5}-\frac {\left (125 \left (20+e^5\right )\right ) \int \log \left (x^2\right ) \, dx}{8 e^{10}}\\ &=\frac {125 \left (20+e^5\right ) x}{4 e^{10}}-\frac {\left (1000+e^5\right ) x}{32 e^5}+\frac {x^2}{16}+\frac {125 \log (x)}{16 e^5}-\frac {125 \left (20+e^5\right ) x \log \left (x^2\right )}{8 e^{10}}+\frac {31875 \log ^2\left (x^2\right )}{32 e^{10}}-\frac {625 x \log ^2\left (x^2\right )}{8 e^{10}}+\frac {390625 \log ^4\left (x^2\right )}{16 e^{20}}+\frac {234375 \operatorname {Subst}\left (\int x^2 \, dx,x,\log \left (x^2\right )\right )}{8 e^{15}}+\frac {625 \int \log \left (x^2\right ) \, dx}{2 e^{10}}\\ &=-\frac {625 x}{e^{10}}+\frac {125 \left (20+e^5\right ) x}{4 e^{10}}-\frac {\left (1000+e^5\right ) x}{32 e^5}+\frac {x^2}{16}+\frac {125 \log (x)}{16 e^5}+\frac {625 x \log \left (x^2\right )}{2 e^{10}}-\frac {125 \left (20+e^5\right ) x \log \left (x^2\right )}{8 e^{10}}+\frac {31875 \log ^2\left (x^2\right )}{32 e^{10}}-\frac {625 x \log ^2\left (x^2\right )}{8 e^{10}}+\frac {78125 \log ^3\left (x^2\right )}{8 e^{15}}+\frac {390625 \log ^4\left (x^2\right )}{16 e^{20}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.07, size = 81, normalized size = 3.12 \begin {gather*} \frac {-e^{20} x+2 e^{20} x^2+250 e^{15} \log (x)-500 e^{15} x \log \left (x^2\right )+31875 e^{10} \log ^2\left (x^2\right )-2500 e^{10} x \log ^2\left (x^2\right )+312500 e^5 \log ^3\left (x^2\right )+781250 \log ^4\left (x^2\right )}{32 e^{20}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.66, size = 64, normalized size = 2.46 \begin {gather*} -\frac {1}{32} \, {\left (625 \, {\left (4 \, x - 51\right )} e^{10} \log \left (x^{2}\right )^{2} - 312500 \, e^{5} \log \left (x^{2}\right )^{3} - 781250 \, \log \left (x^{2}\right )^{4} + 125 \, {\left (4 \, x - 1\right )} e^{15} \log \left (x^{2}\right ) - {\left (2 \, x^{2} - x\right )} e^{20}\right )} e^{\left (-20\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.34, size = 70, normalized size = 2.69 \begin {gather*} -\frac {1}{32} \, {\left (2500 \, x e^{10} \log \left (x^{2}\right )^{2} - 312500 \, e^{5} \log \left (x^{2}\right )^{3} - 781250 \, \log \left (x^{2}\right )^{4} - 2 \, x^{2} e^{20} + 500 \, x e^{15} \log \left (x^{2}\right ) - 31875 \, e^{10} \log \left (x^{2}\right )^{2} + x e^{20} - 250 \, e^{15} \log \relax (x)\right )} e^{\left (-20\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 74, normalized size = 2.85
method | result | size |
risch | \(\frac {x^{2}}{16}-\frac {x}{32}+\frac {125 \ln \relax (x ) {\mathrm e}^{-5}}{16}+\frac {390625 \,{\mathrm e}^{-20} \ln \left (x^{2}\right )^{4}}{16}-\frac {625 \,{\mathrm e}^{-10} \ln \left (x^{2}\right )^{2} x}{8}+\frac {78125 \,{\mathrm e}^{-15} \ln \left (x^{2}\right )^{3}}{8}-\frac {125 \,{\mathrm e}^{-5} \ln \left (x^{2}\right ) x}{8}-\frac {31875 \,{\mathrm e}^{-10} \ln \relax (x )^{2}}{8}+\frac {31875 \,{\mathrm e}^{-10} \ln \relax (x ) \ln \left (x^{2}\right )}{8}\) | \(74\) |
norman | \(\left (\frac {125 \,{\mathrm e}^{10} \ln \left (x^{2}\right )}{32}+\frac {78125 \ln \left (x^{2}\right )^{3}}{8}-\frac {x \,{\mathrm e}^{15}}{32}+\frac {x^{2} {\mathrm e}^{15}}{16}+\frac {390625 \,{\mathrm e}^{-5} \ln \left (x^{2}\right )^{4}}{16}+\frac {31875 \,{\mathrm e}^{5} \ln \left (x^{2}\right )^{2}}{32}-\frac {625 x \,{\mathrm e}^{5} \ln \left (x^{2}\right )^{2}}{8}-\frac {125 \,{\mathrm e}^{10} \ln \left (x^{2}\right ) x}{8}\right ) {\mathrm e}^{-15}\) | \(85\) |
default | \(\frac {{\mathrm e}^{-20} \left (2 x^{2} {\mathrm e}^{20}-x \,{\mathrm e}^{20}+250 \,{\mathrm e}^{15} \ln \relax (x )+781250 \ln \left (x^{2}\right )^{4}-2500 \,{\mathrm e}^{10} \ln \left (x^{2}\right )^{2} x +312500 \,{\mathrm e}^{5} \ln \left (x^{2}\right )^{3}-500 \,{\mathrm e}^{15} \ln \left (x^{2}\right ) x -127500 \,{\mathrm e}^{10} \ln \relax (x )^{2}+127500 \,{\mathrm e}^{10} \ln \relax (x ) \ln \left (x^{2}\right )\right )}{32}\) | \(96\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 80, normalized size = 3.08 \begin {gather*} -\frac {1}{32} \, {\left (2500 \, x e^{10} \log \left (x^{2}\right )^{2} - 312500 \, e^{5} \log \left (x^{2}\right )^{3} - 781250 \, \log \left (x^{2}\right )^{4} - 2 \, x^{2} e^{20} - 31875 \, e^{10} \log \left (x^{2}\right )^{2} + x e^{20} + 500 \, {\left (x \log \left (x^{2}\right ) - 2 \, x\right )} e^{15} + 1000 \, x e^{15} - 250 \, e^{15} \log \relax (x)\right )} e^{\left (-20\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.69, size = 67, normalized size = 2.58 \begin {gather*} \frac {x^2}{16}-\frac {625\,{\mathrm {e}}^{-10}\,x\,{\ln \left (x^2\right )}^2}{8}-\frac {125\,{\mathrm {e}}^{-5}\,x\,\ln \left (x^2\right )}{8}-\frac {x}{32}+\frac {390625\,{\mathrm {e}}^{-20}\,{\ln \left (x^2\right )}^4}{16}+\frac {78125\,{\mathrm {e}}^{-15}\,{\ln \left (x^2\right )}^3}{8}+\frac {31875\,{\mathrm {e}}^{-10}\,{\ln \left (x^2\right )}^2}{32}+\frac {125\,{\mathrm {e}}^{-5}\,\ln \left (x^2\right )}{32} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.27, size = 80, normalized size = 3.08 \begin {gather*} - \frac {125 x \log {\left (x^{2} \right )}}{8 e^{5}} + \frac {\left (31875 - 2500 x\right ) \log {\left (x^{2} \right )}^{2}}{32 e^{10}} + \frac {2 x^{2} e^{5} - x e^{5} + 250 \log {\relax (x )}}{32 e^{5}} + \frac {390625 \log {\left (x^{2} \right )}^{4}}{16 e^{20}} + \frac {78125 \log {\left (x^{2} \right )}^{3}}{8 e^{15}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________