Optimal. Leaf size=15 \[ 2 x+x \log ^8\left (\log \left (1+x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.62, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (2+2 x^2\right ) \log \left (1+x^2\right )+16 x^2 \log ^7\left (\log \left (1+x^2\right )\right )+\left (1+x^2\right ) \log \left (1+x^2\right ) \log ^8\left (\log \left (1+x^2\right )\right )}{\left (1+x^2\right ) \log \left (1+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2+\frac {16 x^2 \log ^7\left (\log \left (1+x^2\right )\right )}{\left (1+x^2\right ) \log \left (1+x^2\right )}+\log ^8\left (\log \left (1+x^2\right )\right )\right ) \, dx\\ &=2 x+16 \int \frac {x^2 \log ^7\left (\log \left (1+x^2\right )\right )}{\left (1+x^2\right ) \log \left (1+x^2\right )} \, dx+\int \log ^8\left (\log \left (1+x^2\right )\right ) \, dx\\ &=2 x+16 \int \left (\frac {\log ^7\left (\log \left (1+x^2\right )\right )}{\log \left (1+x^2\right )}-\frac {\log ^7\left (\log \left (1+x^2\right )\right )}{\left (1+x^2\right ) \log \left (1+x^2\right )}\right ) \, dx+\int \log ^8\left (\log \left (1+x^2\right )\right ) \, dx\\ &=2 x+16 \int \frac {\log ^7\left (\log \left (1+x^2\right )\right )}{\log \left (1+x^2\right )} \, dx-16 \int \frac {\log ^7\left (\log \left (1+x^2\right )\right )}{\left (1+x^2\right ) \log \left (1+x^2\right )} \, dx+\int \log ^8\left (\log \left (1+x^2\right )\right ) \, dx\\ &=2 x+16 \int \frac {\log ^7\left (\log \left (1+x^2\right )\right )}{\log \left (1+x^2\right )} \, dx-16 \int \left (\frac {i \log ^7\left (\log \left (1+x^2\right )\right )}{2 (i-x) \log \left (1+x^2\right )}+\frac {i \log ^7\left (\log \left (1+x^2\right )\right )}{2 (i+x) \log \left (1+x^2\right )}\right ) \, dx+\int \log ^8\left (\log \left (1+x^2\right )\right ) \, dx\\ &=2 x-8 i \int \frac {\log ^7\left (\log \left (1+x^2\right )\right )}{(i-x) \log \left (1+x^2\right )} \, dx-8 i \int \frac {\log ^7\left (\log \left (1+x^2\right )\right )}{(i+x) \log \left (1+x^2\right )} \, dx+16 \int \frac {\log ^7\left (\log \left (1+x^2\right )\right )}{\log \left (1+x^2\right )} \, dx+\int \log ^8\left (\log \left (1+x^2\right )\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 15, normalized size = 1.00 \begin {gather*} 2 x+x \log ^8\left (\log \left (1+x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 15, normalized size = 1.00 \begin {gather*} x \log \left (\log \left (x^{2} + 1\right )\right )^{8} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.76, size = 15, normalized size = 1.00 \begin {gather*} x \log \left (\log \left (x^{2} + 1\right )\right )^{8} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.34, size = 16, normalized size = 1.07
method | result | size |
risch | \(2 x +x \ln \left (\ln \left (x^{2}+1\right )\right )^{8}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 15, normalized size = 1.00 \begin {gather*} x \log \left (\log \left (x^{2} + 1\right )\right )^{8} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.37, size = 13, normalized size = 0.87 \begin {gather*} x\,\left ({\ln \left (\ln \left (x^2+1\right )\right )}^8+2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.48, size = 14, normalized size = 0.93 \begin {gather*} x \log {\left (\log {\left (x^{2} + 1 \right )} \right )}^{8} + 2 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________