Optimal. Leaf size=25 \[ \left (2+\frac {2}{-5+x}+x\right ) \log \left (-2+e^{-5+x} \left (2+e^x\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 8.85, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-5+x} \left (2+e^x\right ) \left (80+14 x-16 x^2+2 x^3+e^x \left (80+14 x-16 x^2+2 x^3\right )\right )+\left (-92+40 x-4 x^2+e^x \left (-46+20 x-2 x^2\right )+e^{-5+x} \left (2+e^x\right ) \left (46-20 x+2 x^2+e^x \left (23-10 x+x^2\right )\right )\right ) \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )}{-100+40 x-4 x^2+e^x \left (-50+20 x-2 x^2\right )+e^{-5+x} \left (2+e^x\right ) \left (50-20 x+2 x^2+e^x \left (25-10 x+x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\frac {2 e^x \left (1+e^x\right ) \left (40+7 x-8 x^2+x^3\right )}{-2 e^5+2 e^x+e^{2 x}}+\left (23-10 x+x^2\right ) \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )}{(5-x)^2} \, dx\\ &=\int \left (-\frac {2 \left (-2 e^5+e^x\right ) \left (-8-3 x+x^2\right )}{\left (-2 e^5+2 e^x+e^{2 x}\right ) (-5+x)}+\frac {80+14 x-16 x^2+2 x^3+23 \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )-10 x \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )+x^2 \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )}{(-5+x)^2}\right ) \, dx\\ &=-\left (2 \int \frac {\left (-2 e^5+e^x\right ) \left (-8-3 x+x^2\right )}{\left (-2 e^5+2 e^x+e^{2 x}\right ) (-5+x)} \, dx\right )+\int \frac {80+14 x-16 x^2+2 x^3+23 \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )-10 x \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )+x^2 \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )}{(-5+x)^2} \, dx\\ &=-\left (2 \int \left (\frac {2 \left (-2 e^5+e^x\right )}{-2 e^5+2 e^x+e^{2 x}}+\frac {2 \left (-2 e^5+e^x\right )}{\left (-2 e^5+2 e^x+e^{2 x}\right ) (-5+x)}+\frac {\left (-2 e^5+e^x\right ) x}{-2 e^5+2 e^x+e^{2 x}}\right ) \, dx\right )+\int \frac {2 \left (40+7 x-8 x^2+x^3\right )+\left (23-10 x+x^2\right ) \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )}{(5-x)^2} \, dx\\ &=-\left (2 \int \frac {\left (-2 e^5+e^x\right ) x}{-2 e^5+2 e^x+e^{2 x}} \, dx\right )-4 \int \frac {-2 e^5+e^x}{-2 e^5+2 e^x+e^{2 x}} \, dx-4 \int \frac {-2 e^5+e^x}{\left (-2 e^5+2 e^x+e^{2 x}\right ) (-5+x)} \, dx+\int \left (\frac {2 \left (-8-3 x+x^2\right )}{-5+x}+\frac {\left (23-10 x+x^2\right ) \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )}{(-5+x)^2}\right ) \, dx\\ &=2 \int \frac {-8-3 x+x^2}{-5+x} \, dx-4 \int \left (\frac {2 e^5}{\left (2 e^5-2 e^x-e^{2 x}\right ) (-5+x)}+\frac {e^x}{\left (-2 e^5+2 e^x+e^{2 x}\right ) (-5+x)}\right ) \, dx-4 \operatorname {Subst}\left (\int \frac {-2 e^5+x}{x \left (-2 e^5+2 x+x^2\right )} \, dx,x,e^x\right )-\left (2 \left (1-\sqrt {1+2 e^5}\right )\right ) \int \frac {x}{2+2 e^x-2 \sqrt {1+2 e^5}} \, dx-\left (2 \left (1+\sqrt {1+2 e^5}\right )\right ) \int \frac {x}{2+2 e^x+2 \sqrt {1+2 e^5}} \, dx+\int \frac {\left (23-10 x+x^2\right ) \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )}{(-5+x)^2} \, dx\\ &=-x^2-\frac {2 \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )}{5-x}+x \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )+2 \int \frac {e^x x}{2+2 e^x-2 \sqrt {1+2 e^5}} \, dx+2 \int \frac {e^x x}{2+2 e^x+2 \sqrt {1+2 e^5}} \, dx+2 \int \left (2+\frac {2}{-5+x}+x\right ) \, dx-4 \int \frac {e^x}{\left (-2 e^5+2 e^x+e^{2 x}\right ) (-5+x)} \, dx-4 \operatorname {Subst}\left (\int \left (\frac {1}{x}+\frac {-1-x}{-2 e^5+2 x+x^2}\right ) \, dx,x,e^x\right )-\left (8 e^5\right ) \int \frac {1}{\left (2 e^5-2 e^x-e^{2 x}\right ) (-5+x)} \, dx-\int \frac {2 e^x \left (1+e^x\right ) \left (2-5 x+x^2\right )}{\left (2 e^5-2 e^x-e^{2 x}\right ) (5-x)} \, dx\\ &=-\frac {2 \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )}{5-x}+x \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )+x \log \left (1+\frac {e^x}{1-\sqrt {1+2 e^5}}\right )+x \log \left (1+\frac {e^x}{1+\sqrt {1+2 e^5}}\right )+4 \log (5-x)-2 \int \frac {e^x \left (1+e^x\right ) \left (2-5 x+x^2\right )}{\left (2 e^5-2 e^x-e^{2 x}\right ) (5-x)} \, dx-4 \int \frac {e^x}{\left (-2 e^5+2 e^x+e^{2 x}\right ) (-5+x)} \, dx-4 \operatorname {Subst}\left (\int \frac {-1-x}{-2 e^5+2 x+x^2} \, dx,x,e^x\right )-\left (8 e^5\right ) \int \frac {1}{\left (2 e^5-2 e^x-e^{2 x}\right ) (-5+x)} \, dx-\int \log \left (1+\frac {2 e^x}{2-2 \sqrt {1+2 e^5}}\right ) \, dx-\int \log \left (1+\frac {2 e^x}{2+2 \sqrt {1+2 e^5}}\right ) \, dx\\ &=2 \log \left (2 e^5-2 e^x-e^{2 x}\right )-\frac {2 \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )}{5-x}+x \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )+x \log \left (1+\frac {e^x}{1-\sqrt {1+2 e^5}}\right )+x \log \left (1+\frac {e^x}{1+\sqrt {1+2 e^5}}\right )+4 \log (5-x)-2 \int \left (\frac {2 e^x \left (1+e^x\right )}{\left (-2 e^5+2 e^x+e^{2 x}\right ) (-5+x)}+\frac {e^x \left (1+e^x\right ) x}{-2 e^5+2 e^x+e^{2 x}}\right ) \, dx-4 \int \frac {e^x}{\left (-2 e^5+2 e^x+e^{2 x}\right ) (-5+x)} \, dx-\left (8 e^5\right ) \int \frac {1}{\left (2 e^5-2 e^x-e^{2 x}\right ) (-5+x)} \, dx-\operatorname {Subst}\left (\int \frac {\log \left (1+\frac {2 x}{2-2 \sqrt {1+2 e^5}}\right )}{x} \, dx,x,e^x\right )-\operatorname {Subst}\left (\int \frac {\log \left (1+\frac {2 x}{2+2 \sqrt {1+2 e^5}}\right )}{x} \, dx,x,e^x\right )\\ &=2 \log \left (2 e^5-2 e^x-e^{2 x}\right )-\frac {2 \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )}{5-x}+x \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )+x \log \left (1+\frac {e^x}{1-\sqrt {1+2 e^5}}\right )+x \log \left (1+\frac {e^x}{1+\sqrt {1+2 e^5}}\right )+4 \log (5-x)+\text {Li}_2\left (-\frac {e^x}{1-\sqrt {1+2 e^5}}\right )+\text {Li}_2\left (-\frac {e^x}{1+\sqrt {1+2 e^5}}\right )-2 \int \frac {e^x \left (1+e^x\right ) x}{-2 e^5+2 e^x+e^{2 x}} \, dx-4 \int \frac {e^x}{\left (-2 e^5+2 e^x+e^{2 x}\right ) (-5+x)} \, dx-4 \int \frac {e^x \left (1+e^x\right )}{\left (-2 e^5+2 e^x+e^{2 x}\right ) (-5+x)} \, dx-\left (8 e^5\right ) \int \frac {1}{\left (2 e^5-2 e^x-e^{2 x}\right ) (-5+x)} \, dx\\ &=2 \log \left (2 e^5-2 e^x-e^{2 x}\right )-\frac {2 \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )}{5-x}+x \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )+x \log \left (1+\frac {e^x}{1-\sqrt {1+2 e^5}}\right )+x \log \left (1+\frac {e^x}{1+\sqrt {1+2 e^5}}\right )+4 \log (5-x)+\text {Li}_2\left (-\frac {e^x}{1-\sqrt {1+2 e^5}}\right )+\text {Li}_2\left (-\frac {e^x}{1+\sqrt {1+2 e^5}}\right )-2 \int \left (\frac {e^x x}{-2 e^5+2 e^x+e^{2 x}}+\frac {e^{2 x} x}{-2 e^5+2 e^x+e^{2 x}}\right ) \, dx-4 \int \left (\frac {e^x}{\left (-2 e^5+2 e^x+e^{2 x}\right ) (-5+x)}+\frac {e^{2 x}}{\left (-2 e^5+2 e^x+e^{2 x}\right ) (-5+x)}\right ) \, dx-4 \int \frac {e^x}{\left (-2 e^5+2 e^x+e^{2 x}\right ) (-5+x)} \, dx-\left (8 e^5\right ) \int \frac {1}{\left (2 e^5-2 e^x-e^{2 x}\right ) (-5+x)} \, dx\\ &=2 \log \left (2 e^5-2 e^x-e^{2 x}\right )-\frac {2 \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )}{5-x}+x \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )+x \log \left (1+\frac {e^x}{1-\sqrt {1+2 e^5}}\right )+x \log \left (1+\frac {e^x}{1+\sqrt {1+2 e^5}}\right )+4 \log (5-x)+\text {Li}_2\left (-\frac {e^x}{1-\sqrt {1+2 e^5}}\right )+\text {Li}_2\left (-\frac {e^x}{1+\sqrt {1+2 e^5}}\right )-2 \int \frac {e^x x}{-2 e^5+2 e^x+e^{2 x}} \, dx-2 \int \frac {e^{2 x} x}{-2 e^5+2 e^x+e^{2 x}} \, dx-2 \left (4 \int \frac {e^x}{\left (-2 e^5+2 e^x+e^{2 x}\right ) (-5+x)} \, dx\right )-4 \int \frac {e^{2 x}}{\left (-2 e^5+2 e^x+e^{2 x}\right ) (-5+x)} \, dx-\left (8 e^5\right ) \int \frac {1}{\left (2 e^5-2 e^x-e^{2 x}\right ) (-5+x)} \, dx\\ &=2 \log \left (2 e^5-2 e^x-e^{2 x}\right )-\frac {2 \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )}{5-x}+x \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )+x \log \left (1+\frac {e^x}{1-\sqrt {1+2 e^5}}\right )+x \log \left (1+\frac {e^x}{1+\sqrt {1+2 e^5}}\right )+4 \log (5-x)+\text {Li}_2\left (-\frac {e^x}{1-\sqrt {1+2 e^5}}\right )+\text {Li}_2\left (-\frac {e^x}{1+\sqrt {1+2 e^5}}\right )-2 \int \frac {e^{2 x} x}{-2 e^5+2 e^x+e^{2 x}} \, dx-2 \left (4 \int \frac {e^x}{\left (-2 e^5+2 e^x+e^{2 x}\right ) (-5+x)} \, dx\right )-4 \int \frac {e^{2 x}}{\left (-2 e^5+2 e^x+e^{2 x}\right ) (-5+x)} \, dx-\left (8 e^5\right ) \int \frac {1}{\left (2 e^5-2 e^x-e^{2 x}\right ) (-5+x)} \, dx-\frac {2 \int \frac {e^x x}{2+2 e^x-2 \sqrt {1+2 e^5}} \, dx}{\sqrt {1+2 e^5}}+\frac {2 \int \frac {e^x x}{2+2 e^x+2 \sqrt {1+2 e^5}} \, dx}{\sqrt {1+2 e^5}}\\ &=2 \log \left (2 e^5-2 e^x-e^{2 x}\right )-\frac {2 \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )}{5-x}+x \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )+x \log \left (1+\frac {e^x}{1-\sqrt {1+2 e^5}}\right )-\frac {x \log \left (1+\frac {e^x}{1-\sqrt {1+2 e^5}}\right )}{\sqrt {1+2 e^5}}+x \log \left (1+\frac {e^x}{1+\sqrt {1+2 e^5}}\right )+\frac {x \log \left (1+\frac {e^x}{1+\sqrt {1+2 e^5}}\right )}{\sqrt {1+2 e^5}}+4 \log (5-x)+\text {Li}_2\left (-\frac {e^x}{1-\sqrt {1+2 e^5}}\right )+\text {Li}_2\left (-\frac {e^x}{1+\sqrt {1+2 e^5}}\right )-2 \int \frac {e^{2 x} x}{-2 e^5+2 e^x+e^{2 x}} \, dx-2 \left (4 \int \frac {e^x}{\left (-2 e^5+2 e^x+e^{2 x}\right ) (-5+x)} \, dx\right )-4 \int \frac {e^{2 x}}{\left (-2 e^5+2 e^x+e^{2 x}\right ) (-5+x)} \, dx-\left (8 e^5\right ) \int \frac {1}{\left (2 e^5-2 e^x-e^{2 x}\right ) (-5+x)} \, dx+\frac {\int \log \left (1+\frac {2 e^x}{2-2 \sqrt {1+2 e^5}}\right ) \, dx}{\sqrt {1+2 e^5}}-\frac {\int \log \left (1+\frac {2 e^x}{2+2 \sqrt {1+2 e^5}}\right ) \, dx}{\sqrt {1+2 e^5}}\\ &=2 \log \left (2 e^5-2 e^x-e^{2 x}\right )-\frac {2 \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )}{5-x}+x \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )+x \log \left (1+\frac {e^x}{1-\sqrt {1+2 e^5}}\right )-\frac {x \log \left (1+\frac {e^x}{1-\sqrt {1+2 e^5}}\right )}{\sqrt {1+2 e^5}}+x \log \left (1+\frac {e^x}{1+\sqrt {1+2 e^5}}\right )+\frac {x \log \left (1+\frac {e^x}{1+\sqrt {1+2 e^5}}\right )}{\sqrt {1+2 e^5}}+4 \log (5-x)+\text {Li}_2\left (-\frac {e^x}{1-\sqrt {1+2 e^5}}\right )+\text {Li}_2\left (-\frac {e^x}{1+\sqrt {1+2 e^5}}\right )-2 \int \frac {e^{2 x} x}{-2 e^5+2 e^x+e^{2 x}} \, dx-2 \left (4 \int \frac {e^x}{\left (-2 e^5+2 e^x+e^{2 x}\right ) (-5+x)} \, dx\right )-4 \int \frac {e^{2 x}}{\left (-2 e^5+2 e^x+e^{2 x}\right ) (-5+x)} \, dx-\left (8 e^5\right ) \int \frac {1}{\left (2 e^5-2 e^x-e^{2 x}\right ) (-5+x)} \, dx+\frac {\operatorname {Subst}\left (\int \frac {\log \left (1+\frac {2 x}{2-2 \sqrt {1+2 e^5}}\right )}{x} \, dx,x,e^x\right )}{\sqrt {1+2 e^5}}-\frac {\operatorname {Subst}\left (\int \frac {\log \left (1+\frac {2 x}{2+2 \sqrt {1+2 e^5}}\right )}{x} \, dx,x,e^x\right )}{\sqrt {1+2 e^5}}\\ &=2 \log \left (2 e^5-2 e^x-e^{2 x}\right )-\frac {2 \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )}{5-x}+x \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )+x \log \left (1+\frac {e^x}{1-\sqrt {1+2 e^5}}\right )-\frac {x \log \left (1+\frac {e^x}{1-\sqrt {1+2 e^5}}\right )}{\sqrt {1+2 e^5}}+x \log \left (1+\frac {e^x}{1+\sqrt {1+2 e^5}}\right )+\frac {x \log \left (1+\frac {e^x}{1+\sqrt {1+2 e^5}}\right )}{\sqrt {1+2 e^5}}+4 \log (5-x)+\text {Li}_2\left (-\frac {e^x}{1-\sqrt {1+2 e^5}}\right )-\frac {\text {Li}_2\left (-\frac {e^x}{1-\sqrt {1+2 e^5}}\right )}{\sqrt {1+2 e^5}}+\text {Li}_2\left (-\frac {e^x}{1+\sqrt {1+2 e^5}}\right )+\frac {\text {Li}_2\left (-\frac {e^x}{1+\sqrt {1+2 e^5}}\right )}{\sqrt {1+2 e^5}}-2 \int \frac {e^{2 x} x}{-2 e^5+2 e^x+e^{2 x}} \, dx-2 \left (4 \int \frac {e^x}{\left (-2 e^5+2 e^x+e^{2 x}\right ) (-5+x)} \, dx\right )-4 \int \frac {e^{2 x}}{\left (-2 e^5+2 e^x+e^{2 x}\right ) (-5+x)} \, dx-\left (8 e^5\right ) \int \frac {1}{\left (2 e^5-2 e^x-e^{2 x}\right ) (-5+x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.70, size = 48, normalized size = 1.92 \begin {gather*} 2 \log \left (-2 e^5+2 e^x+e^{2 x}\right )+\frac {\left (2-5 x+x^2\right ) \log \left (-2+e^{-5+x} \left (2+e^x\right )\right )}{-5+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 34, normalized size = 1.36 \begin {gather*} \frac {{\left (x^{2} - 3 \, x - 8\right )} \log \left (-{\left (2 \, e^{5} - e^{\left (2 \, x\right )} - 2 \, e^{x}\right )} e^{\left (-5\right )}\right )}{x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 8.29, size = 104, normalized size = 4.16 \begin {gather*} \frac {x^{2} \log \left (-2 \, e^{5} + e^{\left (2 \, x\right )} + 2 \, e^{x}\right ) - 5 \, x^{2} + 2 \, x \log \left (2 \, e^{5} - e^{\left (2 \, x\right )} - 2 \, e^{x}\right ) - 5 \, x \log \left (-2 \, e^{5} + e^{\left (2 \, x\right )} + 2 \, e^{x}\right ) + 25 \, x - 10 \, \log \left (2 \, e^{5} - e^{\left (2 \, x\right )} - 2 \, e^{x}\right ) + 2 \, \log \left (-2 \, e^{5} + e^{\left (2 \, x\right )} + 2 \, e^{x}\right ) - 10}{x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 44, normalized size = 1.76
method | result | size |
risch | \(\frac {\left (x^{2}-5 x +2\right ) \ln \left (\left ({\mathrm e}^{x}+2\right ) {\mathrm e}^{x -5}-2\right )}{x -5}+2 \ln \left ({\mathrm e}^{2 x}+2 \,{\mathrm e}^{x}-2 \,{\mathrm e}^{5}\right )\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 41, normalized size = 1.64 \begin {gather*} -\frac {5 \, x^{2} - {\left (x^{2} - 3 \, x - 8\right )} \log \left (-2 \, e^{5} + e^{\left (2 \, x\right )} + 2 \, e^{x}\right ) - 25 \, x + 10}{x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.54, size = 61, normalized size = 2.44 \begin {gather*} -3\,\ln \left ({\mathrm {e}}^{2\,x}-2\,{\mathrm {e}}^5+2\,{\mathrm {e}}^x\right )-\ln \left ({\mathrm {e}}^{-5}\,{\mathrm {e}}^x\,\left ({\mathrm {e}}^x+2\right )-2\right )\,\left (\frac {10\,x-2\,x^2}{x-5}+\frac {x^2-10\,x+23}{x-5}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.65, size = 44, normalized size = 1.76 \begin {gather*} 2 \log {\left (e^{2 x} + 2 e^{x} - 2 e^{5} \right )} + \frac {\left (x^{2} - 5 x + 2\right ) \log {\left (\frac {\left (e^{x} + 2\right ) e^{x}}{e^{5}} - 2 \right )}}{x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________