Optimal. Leaf size=18 \[ \frac {100 x}{\log \left (\log \left (\frac {1}{3} e^{-x} \log (x)\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.64, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-100+100 x \log (x)+100 \log (x) \log \left (\frac {1}{3} e^{-x} \log (x)\right ) \log \left (\log \left (\frac {1}{3} e^{-x} \log (x)\right )\right )}{\log (x) \log \left (\frac {1}{3} e^{-x} \log (x)\right ) \log ^2\left (\log \left (\frac {1}{3} e^{-x} \log (x)\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {100 \left (-1+x \log (x)+\log (x) \log \left (\frac {1}{3} e^{-x} \log (x)\right ) \log \left (\log \left (\frac {1}{3} e^{-x} \log (x)\right )\right )\right )}{\log (x) \log \left (\frac {1}{3} e^{-x} \log (x)\right ) \log ^2\left (\log \left (\frac {1}{3} e^{-x} \log (x)\right )\right )} \, dx\\ &=100 \int \frac {-1+x \log (x)+\log (x) \log \left (\frac {1}{3} e^{-x} \log (x)\right ) \log \left (\log \left (\frac {1}{3} e^{-x} \log (x)\right )\right )}{\log (x) \log \left (\frac {1}{3} e^{-x} \log (x)\right ) \log ^2\left (\log \left (\frac {1}{3} e^{-x} \log (x)\right )\right )} \, dx\\ &=100 \int \left (\frac {-1+x \log (x)}{\log (x) \log \left (\frac {1}{3} e^{-x} \log (x)\right ) \log ^2\left (\log \left (\frac {1}{3} e^{-x} \log (x)\right )\right )}+\frac {1}{\log \left (\log \left (\frac {1}{3} e^{-x} \log (x)\right )\right )}\right ) \, dx\\ &=100 \int \frac {-1+x \log (x)}{\log (x) \log \left (\frac {1}{3} e^{-x} \log (x)\right ) \log ^2\left (\log \left (\frac {1}{3} e^{-x} \log (x)\right )\right )} \, dx+100 \int \frac {1}{\log \left (\log \left (\frac {1}{3} e^{-x} \log (x)\right )\right )} \, dx\\ &=100 \int \left (\frac {x}{\log \left (\frac {1}{3} e^{-x} \log (x)\right ) \log ^2\left (\log \left (\frac {1}{3} e^{-x} \log (x)\right )\right )}-\frac {1}{\log (x) \log \left (\frac {1}{3} e^{-x} \log (x)\right ) \log ^2\left (\log \left (\frac {1}{3} e^{-x} \log (x)\right )\right )}\right ) \, dx+100 \int \frac {1}{\log \left (\log \left (\frac {1}{3} e^{-x} \log (x)\right )\right )} \, dx\\ &=100 \int \frac {x}{\log \left (\frac {1}{3} e^{-x} \log (x)\right ) \log ^2\left (\log \left (\frac {1}{3} e^{-x} \log (x)\right )\right )} \, dx-100 \int \frac {1}{\log (x) \log \left (\frac {1}{3} e^{-x} \log (x)\right ) \log ^2\left (\log \left (\frac {1}{3} e^{-x} \log (x)\right )\right )} \, dx+100 \int \frac {1}{\log \left (\log \left (\frac {1}{3} e^{-x} \log (x)\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 18, normalized size = 1.00 \begin {gather*} \frac {100 x}{\log \left (\log \left (\frac {1}{3} e^{-x} \log (x)\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 15, normalized size = 0.83 \begin {gather*} \frac {100 \, x}{\log \left (\log \left (\frac {1}{3} \, e^{\left (-x\right )} \log \relax (x)\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 17, normalized size = 0.94 \begin {gather*} \frac {100 \, x}{\log \left (-x - \log \relax (3) + \log \left (\log \relax (x)\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.18, size = 74, normalized size = 4.11
method | result | size |
risch | \(\frac {100 x}{\ln \left (-\ln \relax (3)-\ln \left ({\mathrm e}^{x}\right )+\ln \left (\ln \relax (x )\right )-\frac {i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-x} \ln \relax (x )\right ) \left (-\mathrm {csgn}\left (i {\mathrm e}^{-x} \ln \relax (x )\right )+\mathrm {csgn}\left (i {\mathrm e}^{-x}\right )\right ) \left (-\mathrm {csgn}\left (i {\mathrm e}^{-x} \ln \relax (x )\right )+\mathrm {csgn}\left (i \ln \relax (x )\right )\right )}{2}\right )}\) | \(74\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 17, normalized size = 0.94 \begin {gather*} \frac {100 \, x}{\log \left (-x - \log \relax (3) + \log \left (\log \relax (x)\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.67, size = 77, normalized size = 4.28 \begin {gather*} 100\,x-100\,\ln \left (\ln \relax (x)\right )-\frac {100\,\ln \left (\frac {{\mathrm {e}}^{-x}\,\ln \relax (x)}{3}\right )}{x\,\ln \relax (x)-1}+\frac {100\,x+\frac {100\,x\,\ln \left (\ln \left (\frac {{\mathrm {e}}^{-x}\,\ln \relax (x)}{3}\right )\right )\,\ln \relax (x)\,\ln \left (\frac {{\mathrm {e}}^{-x}\,\ln \relax (x)}{3}\right )}{x\,\ln \relax (x)-1}}{\ln \left (\ln \left (\frac {{\mathrm {e}}^{-x}\,\ln \relax (x)}{3}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.70, size = 14, normalized size = 0.78 \begin {gather*} \frac {100 x}{\log {\left (\log {\left (\frac {e^{- x} \log {\relax (x )}}{3} \right )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________