Optimal. Leaf size=22 \[ 13+4 x+e^{-4+e^{\left (2+e^x\right )^4+x}} x \]
________________________________________________________________________________________
Rubi [B] time = 0.18, antiderivative size = 100, normalized size of antiderivative = 4.55, number of steps used = 3, number of rules used = 2, integrand size = 106, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.019, Rules used = {12, 2288} \begin {gather*} \frac {\left (32 e^x x+48 e^{2 x} x+24 e^{3 x} x+4 e^{4 x} x+x\right ) \exp \left (e^{x+32 e^x+24 e^{2 x}+8 e^{3 x}+e^{4 x}+16}-4\right )}{32 e^x+48 e^{2 x}+24 e^{3 x}+4 e^{4 x}+1}+4 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (4 e^4+e^{e^{16+32 e^x+24 e^{2 x}+8 e^{3 x}+e^{4 x}+x}} \left (1+e^{16+32 e^x+24 e^{2 x}+8 e^{3 x}+e^{4 x}+x} \left (x+32 e^x x+48 e^{2 x} x+24 e^{3 x} x+4 e^{4 x} x\right )\right )\right ) \, dx}{e^4}\\ &=4 x+\frac {\int e^{e^{16+32 e^x+24 e^{2 x}+8 e^{3 x}+e^{4 x}+x}} \left (1+e^{16+32 e^x+24 e^{2 x}+8 e^{3 x}+e^{4 x}+x} \left (x+32 e^x x+48 e^{2 x} x+24 e^{3 x} x+4 e^{4 x} x\right )\right ) \, dx}{e^4}\\ &=4 x+\frac {\exp \left (-4+e^{16+32 e^x+24 e^{2 x}+8 e^{3 x}+e^{4 x}+x}\right ) \left (x+32 e^x x+48 e^{2 x} x+24 e^{3 x} x+4 e^{4 x} x\right )}{1+32 e^x+48 e^{2 x}+24 e^{3 x}+4 e^{4 x}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 39, normalized size = 1.77 \begin {gather*} 4 x+e^{-4+e^{16+32 e^x+24 e^{2 x}+8 e^{3 x}+e^{4 x}+x}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 36, normalized size = 1.64 \begin {gather*} {\left (4 \, x e^{4} + x e^{\left (e^{\left (x + e^{\left (4 \, x\right )} + 8 \, e^{\left (3 \, x\right )} + 24 \, e^{\left (2 \, x\right )} + 32 \, e^{x} + 16\right )}\right )}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int {\left ({\left ({\left (4 \, x e^{\left (4 \, x\right )} + 24 \, x e^{\left (3 \, x\right )} + 48 \, x e^{\left (2 \, x\right )} + 32 \, x e^{x} + x\right )} e^{\left (x + e^{\left (4 \, x\right )} + 8 \, e^{\left (3 \, x\right )} + 24 \, e^{\left (2 \, x\right )} + 32 \, e^{x} + 16\right )} + 1\right )} e^{\left (e^{\left (x + e^{\left (4 \, x\right )} + 8 \, e^{\left (3 \, x\right )} + 24 \, e^{\left (2 \, x\right )} + 32 \, e^{x} + 16\right )}\right )} + 4 \, e^{4}\right )} e^{\left (-4\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 34, normalized size = 1.55
method | result | size |
risch | \(4 x +x \,{\mathrm e}^{-4+{\mathrm e}^{{\mathrm e}^{4 x}+8 \,{\mathrm e}^{3 x}+24 \,{\mathrm e}^{2 x}+32 \,{\mathrm e}^{x}+x +16}}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 36, normalized size = 1.64 \begin {gather*} {\left (4 \, x e^{4} + x e^{\left (e^{\left (x + e^{\left (4 \, x\right )} + 8 \, e^{\left (3 \, x\right )} + 24 \, e^{\left (2 \, x\right )} + 32 \, e^{x} + 16\right )}\right )}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.29, size = 39, normalized size = 1.77 \begin {gather*} x\,{\mathrm {e}}^{-4}\,\left ({\mathrm {e}}^{{\mathrm {e}}^{8\,{\mathrm {e}}^{3\,x}}\,{\mathrm {e}}^{24\,{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^{16}\,{\mathrm {e}}^{{\mathrm {e}}^{4\,x}}\,{\mathrm {e}}^{32\,{\mathrm {e}}^x}\,{\mathrm {e}}^x}+4\,{\mathrm {e}}^4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________