Optimal. Leaf size=25 \[ 2+2 x+\log (x)-\frac {6}{\log \left (\log (x)-(x+7 \log (x))^2\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.48, antiderivative size = 30, normalized size of antiderivative = 1.20, number of steps used = 5, number of rules used = 3, integrand size = 123, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.024, Rules used = {6742, 43, 6686} \begin {gather*} -\frac {6}{\log \left (-x^2-49 \log ^2(x)-14 x \log (x)+\log (x)\right )}+2 x+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rule 6686
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1+2 x}{x}+\frac {6 \left (-1+14 x+2 x^2+98 \log (x)+14 x \log (x)\right )}{x \left (x^2-\log (x)+14 x \log (x)+49 \log ^2(x)\right ) \log ^2\left (-x^2+\log (x)-14 x \log (x)-49 \log ^2(x)\right )}\right ) \, dx\\ &=6 \int \frac {-1+14 x+2 x^2+98 \log (x)+14 x \log (x)}{x \left (x^2-\log (x)+14 x \log (x)+49 \log ^2(x)\right ) \log ^2\left (-x^2+\log (x)-14 x \log (x)-49 \log ^2(x)\right )} \, dx+\int \frac {1+2 x}{x} \, dx\\ &=-\frac {6}{\log \left (-x^2+\log (x)-14 x \log (x)-49 \log ^2(x)\right )}+\int \left (2+\frac {1}{x}\right ) \, dx\\ &=2 x+\log (x)-\frac {6}{\log \left (-x^2+\log (x)-14 x \log (x)-49 \log ^2(x)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 30, normalized size = 1.20 \begin {gather*} 2 x+\log (x)-\frac {6}{\log \left (-x^2+\log (x)-14 x \log (x)-49 \log ^2(x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.04, size = 56, normalized size = 2.24 \begin {gather*} \frac {{\left (2 \, x + \log \relax (x)\right )} \log \left (-x^{2} - {\left (14 \, x - 1\right )} \log \relax (x) - 49 \, \log \relax (x)^{2}\right ) - 6}{\log \left (-x^{2} - {\left (14 \, x - 1\right )} \log \relax (x) - 49 \, \log \relax (x)^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.53, size = 30, normalized size = 1.20 \begin {gather*} 2 \, x - \frac {6}{\log \left (-x^{2} - 14 \, x \log \relax (x) - 49 \, \log \relax (x)^{2} + \log \relax (x)\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 32, normalized size = 1.28
method | result | size |
risch | \(2 x +\ln \relax (x )-\frac {6}{\ln \left (-49 \ln \relax (x )^{2}+\left (-14 x +1\right ) \ln \relax (x )-x^{2}\right )}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 55, normalized size = 2.20 \begin {gather*} \frac {2 \, {\left (x \log \left (-x^{2} - {\left (14 \, x - 1\right )} \log \relax (x) - 49 \, \log \relax (x)^{2}\right ) - 3\right )}}{\log \left (-x^{2} - {\left (14 \, x - 1\right )} \log \relax (x) - 49 \, \log \relax (x)^{2}\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.27, size = 32, normalized size = 1.28 \begin {gather*} 2\,x+\ln \relax (x)-\frac {6}{\ln \left (-49\,{\ln \relax (x)}^2-\ln \relax (x)\,\left (14\,x-1\right )-x^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 27, normalized size = 1.08 \begin {gather*} 2 x + \log {\relax (x )} - \frac {6}{\log {\left (- x^{2} + \left (1 - 14 x\right ) \log {\relax (x )} - 49 \log {\relax (x )}^{2} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________