Optimal. Leaf size=25 \[ e^{e^{\frac {3 x}{2+\frac {1}{3} \left (e^3+\log \left (\frac {5}{3}\right )\right )+\log (x)}}} \]
________________________________________________________________________________________
Rubi [F] time = 3.98, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (e^{\frac {9 x}{6+e^3+\log \left (\frac {5}{3}\right )+3 \log (x)}}+\frac {9 x}{6+e^3+\log \left (\frac {5}{3}\right )+3 \log (x)}\right ) \left (27+9 e^3+9 \log \left (\frac {5}{3}\right )+27 \log (x)\right )}{36+12 e^3+e^6-\left (-12-2 e^3\right ) \log \left (\frac {5}{3}\right )+\log ^2\left (\frac {5}{3}\right )+\left (36+6 e^3+6 \log \left (\frac {5}{3}\right )\right ) \log (x)+9 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {9 \exp \left (e^{\frac {9 x}{6+e^3+\log \left (\frac {5}{3}\right )+3 \log (x)}}+\frac {9 x}{6+e^3+\log \left (\frac {5}{3}\right )+3 \log (x)}\right ) \left (3 \left (1+\frac {1}{3} \left (e^3+\log \left (\frac {5}{3}\right )\right )\right )+3 \log (x)\right )}{\left (6 \left (1+\frac {1}{6} \left (e^3+\log \left (\frac {5}{3}\right )\right )\right )+3 \log (x)\right )^2} \, dx\\ &=9 \int \frac {\exp \left (e^{\frac {9 x}{6+e^3+\log \left (\frac {5}{3}\right )+3 \log (x)}}+\frac {9 x}{6+e^3+\log \left (\frac {5}{3}\right )+3 \log (x)}\right ) \left (3 \left (1+\frac {1}{3} \left (e^3+\log \left (\frac {5}{3}\right )\right )\right )+3 \log (x)\right )}{\left (6 \left (1+\frac {1}{6} \left (e^3+\log \left (\frac {5}{3}\right )\right )\right )+3 \log (x)\right )^2} \, dx\\ &=9 \int \left (\frac {\exp \left (e^{\frac {9 x}{6+e^3+\log \left (\frac {5}{3}\right )+3 \log (x)}}+\frac {9 x}{6+e^3+\log \left (\frac {5}{3}\right )+3 \log (x)}\right ) \left (-18 \left (1+\frac {1}{6} \left (e^3+\log \left (\frac {5}{3}\right )\right )\right )+9 \left (1+\frac {1}{3} \left (e^3+\log \left (\frac {5}{3}\right )\right )\right )\right )}{3 \left (6 \left (1+\frac {1}{6} \left (e^3+\log \left (\frac {5}{3}\right )\right )\right )+3 \log (x)\right )^2}+\frac {\exp \left (e^{\frac {9 x}{6+e^3+\log \left (\frac {5}{3}\right )+3 \log (x)}}+\frac {9 x}{6+e^3+\log \left (\frac {5}{3}\right )+3 \log (x)}\right )}{6 \left (1+\frac {1}{6} \left (e^3+\log \left (\frac {5}{3}\right )\right )\right )+3 \log (x)}\right ) \, dx\\ &=9 \int \frac {\exp \left (e^{\frac {9 x}{6+e^3+\log \left (\frac {5}{3}\right )+3 \log (x)}}+\frac {9 x}{6+e^3+\log \left (\frac {5}{3}\right )+3 \log (x)}\right )}{6 \left (1+\frac {1}{6} \left (e^3+\log \left (\frac {5}{3}\right )\right )\right )+3 \log (x)} \, dx-27 \int \frac {\exp \left (e^{\frac {9 x}{6+e^3+\log \left (\frac {5}{3}\right )+3 \log (x)}}+\frac {9 x}{6+e^3+\log \left (\frac {5}{3}\right )+3 \log (x)}\right )}{\left (6 \left (1+\frac {1}{6} \left (e^3+\log \left (\frac {5}{3}\right )\right )\right )+3 \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.42, size = 22, normalized size = 0.88 \begin {gather*} e^{e^{\frac {9 x}{6+e^3+\log \left (\frac {5}{3}\right )+3 \log (x)}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.79, size = 69, normalized size = 2.76 \begin {gather*} e^{\left (\frac {{\left (e^{3} - \log \left (\frac {3}{5}\right ) + 3 \, \log \relax (x) + 6\right )} e^{\left (\frac {9 \, x}{e^{3} - \log \left (\frac {3}{5}\right ) + 3 \, \log \relax (x) + 6}\right )} + 9 \, x}{e^{3} - \log \left (\frac {3}{5}\right ) + 3 \, \log \relax (x) + 6} - \frac {9 \, x}{e^{3} - \log \left (\frac {3}{5}\right ) + 3 \, \log \relax (x) + 6}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 7.83, size = 157, normalized size = 6.28 \begin {gather*} e^{\left (\frac {e^{\left (\frac {9 \, x}{e^{3} + \log \relax (5) - \log \relax (3) + 3 \, \log \relax (x) + 6}\right )} \log \relax (5) - e^{\left (\frac {9 \, x}{e^{3} + \log \relax (5) - \log \relax (3) + 3 \, \log \relax (x) + 6}\right )} \log \relax (3) + 3 \, e^{\left (\frac {9 \, x}{e^{3} + \log \relax (5) - \log \relax (3) + 3 \, \log \relax (x) + 6}\right )} \log \relax (x) + 9 \, x + 6 \, e^{\left (\frac {9 \, x}{e^{3} + \log \relax (5) - \log \relax (3) + 3 \, \log \relax (x) + 6}\right )} + e^{\left (\frac {9 \, x}{e^{3} + \log \relax (5) - \log \relax (3) + 3 \, \log \relax (x) + 6} + 3\right )}}{e^{3} + \log \relax (5) - \log \relax (3) + 3 \, \log \relax (x) + 6} - \frac {9 \, x}{e^{3} + \log \relax (5) - \log \relax (3) + 3 \, \log \relax (x) + 6}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.78, size = 22, normalized size = 0.88
method | result | size |
risch | \({\mathrm e}^{{\mathrm e}^{\frac {9 x}{3 \ln \relax (x )-\ln \relax (3)+\ln \relax (5)+{\mathrm e}^{3}+6}}}\) | \(22\) |
norman | \(\frac {\left ({\mathrm e}^{3}-\ln \relax (3)+\ln \relax (5)+6\right ) {\mathrm e}^{{\mathrm e}^{\frac {9 x}{3 \ln \relax (x )-\ln \left (\frac {3}{5}\right )+{\mathrm e}^{3}+6}}}+3 \ln \relax (x ) {\mathrm e}^{{\mathrm e}^{\frac {9 x}{3 \ln \relax (x )-\ln \left (\frac {3}{5}\right )+{\mathrm e}^{3}+6}}}}{3 \ln \relax (x )-\ln \left (\frac {3}{5}\right )+{\mathrm e}^{3}+6}\) | \(70\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.68, size = 21, normalized size = 0.84 \begin {gather*} e^{\left (e^{\left (\frac {9 \, x}{e^{3} + \log \relax (5) - \log \relax (3) + 3 \, \log \relax (x) + 6}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^{\frac {9\,x}{{\mathrm {e}}^3-\ln \left (\frac {3}{5}\right )+3\,\ln \relax (x)+6}}\,{\mathrm {e}}^{{\mathrm {e}}^{\frac {9\,x}{{\mathrm {e}}^3-\ln \left (\frac {3}{5}\right )+3\,\ln \relax (x)+6}}}\,\left (9\,{\mathrm {e}}^3-9\,\ln \left (\frac {3}{5}\right )+27\,\ln \relax (x)+27\right )}{9\,{\ln \relax (x)}^2+\left (6\,{\mathrm {e}}^3-6\,\ln \left (\frac {3}{5}\right )+36\right )\,\ln \relax (x)+12\,{\mathrm {e}}^3+{\mathrm {e}}^6+{\ln \left (\frac {3}{5}\right )}^2-\ln \left (\frac {3}{5}\right )\,\left (2\,{\mathrm {e}}^3+12\right )+36} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 5.43, size = 20, normalized size = 0.80 \begin {gather*} e^{e^{\frac {9 x}{3 \log {\relax (x )} - \log {\left (\frac {3}{5} \right )} + 6 + e^{3}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________