Optimal. Leaf size=19 \[ e^{e^{e^{e^x} \left (-2+x^2\right )}+x} x \]
________________________________________________________________________________________
Rubi [B] time = 0.68, antiderivative size = 110, normalized size of antiderivative = 5.79, number of steps used = 1, number of rules used = 1, integrand size = 56, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.018, Rules used = {2288} \begin {gather*} \frac {e^{e^{-e^{e^x} \left (2-x^2\right )}+x} \left (e^{e^x-e^{e^x} \left (2-x^2\right )} \left (2 x^2-e^x \left (2 x-x^3\right )\right )+x\right )}{e^{-e^{e^x} \left (2-x^2\right )} \left (2 e^{e^x} x-e^{x+e^x} \left (2-x^2\right )\right )+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {e^{e^{-e^{e^x} \left (2-x^2\right )}+x} \left (x+e^{e^x-e^{e^x} \left (2-x^2\right )} \left (2 x^2-e^x \left (2 x-x^3\right )\right )\right )}{1+e^{-e^{e^x} \left (2-x^2\right )} \left (2 e^{e^x} x-e^{e^x+x} \left (2-x^2\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.62, size = 19, normalized size = 1.00 \begin {gather*} e^{e^{e^{e^x} \left (-2+x^2\right )}+x} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 28, normalized size = 1.47 \begin {gather*} x e^{\left ({\left (x e^{\left (e^{x}\right )} + e^{\left ({\left (x^{2} - 2\right )} e^{\left (e^{x}\right )} + e^{x}\right )}\right )} e^{\left (-e^{x}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int {\left ({\left (2 \, x^{2} + {\left (x^{3} - 2 \, x\right )} e^{x}\right )} e^{\left ({\left (x^{2} - 2\right )} e^{\left (e^{x}\right )} + e^{x}\right )} + x + 1\right )} e^{\left (x + e^{\left ({\left (x^{2} - 2\right )} e^{\left (e^{x}\right )}\right )}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 16, normalized size = 0.84
method | result | size |
risch | \(x \,{\mathrm e}^{{\mathrm e}^{\left (x^{2}-2\right ) {\mathrm e}^{{\mathrm e}^{x}}}+x}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 19, normalized size = 1.00 \begin {gather*} x e^{\left (x + e^{\left (x^{2} e^{\left (e^{x}\right )} - 2 \, e^{\left (e^{x}\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.20, size = 20, normalized size = 1.05 \begin {gather*} x\,{\mathrm {e}}^{{\mathrm {e}}^{-2\,{\mathrm {e}}^{{\mathrm {e}}^x}}\,{\mathrm {e}}^{x^2\,{\mathrm {e}}^{{\mathrm {e}}^x}}}\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 12.46, size = 15, normalized size = 0.79 \begin {gather*} x e^{x + e^{\left (x^{2} - 2\right ) e^{e^{x}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________