Optimal. Leaf size=27 \[ e^4+7 x \left (x-\frac {e^4}{1+x-\log (2-x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.66, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^4 (14-14 x)-28 x-42 x^2+14 x^4+\left (56 x+28 x^2-28 x^3+e^4 (-14+7 x)\right ) \log (2-x)+\left (-28 x+14 x^2\right ) \log ^2(2-x)}{-2-3 x+x^3+\left (4+2 x-2 x^2\right ) \log (2-x)+(-2+x) \log ^2(2-x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {7 \left (2 e^4 (-1+x)-2 (-2+x) x (1+x)^2-\left (e^4 (-2+x)+4 x \left (2+x-x^2\right )\right ) \log (2-x)-2 (-2+x) x \log ^2(2-x)\right )}{(2-x) (1+x-\log (2-x))^2} \, dx\\ &=7 \int \frac {2 e^4 (-1+x)-2 (-2+x) x (1+x)^2-\left (e^4 (-2+x)+4 x \left (2+x-x^2\right )\right ) \log (2-x)-2 (-2+x) x \log ^2(2-x)}{(2-x) (1+x-\log (2-x))^2} \, dx\\ &=7 \int \left (2 x+\frac {e^4 (-3+x) x}{(-2+x) (1+x-\log (2-x))^2}-\frac {e^4}{1+x-\log (2-x)}\right ) \, dx\\ &=7 x^2+\left (7 e^4\right ) \int \frac {(-3+x) x}{(-2+x) (1+x-\log (2-x))^2} \, dx-\left (7 e^4\right ) \int \frac {1}{1+x-\log (2-x)} \, dx\\ &=7 x^2+\left (7 e^4\right ) \int \left (-\frac {1}{(1+x-\log (2-x))^2}-\frac {2}{(-2+x) (1+x-\log (2-x))^2}+\frac {x}{(1+x-\log (2-x))^2}\right ) \, dx-\left (7 e^4\right ) \int \frac {1}{1+x-\log (2-x)} \, dx\\ &=7 x^2-\left (7 e^4\right ) \int \frac {1}{(1+x-\log (2-x))^2} \, dx+\left (7 e^4\right ) \int \frac {x}{(1+x-\log (2-x))^2} \, dx-\left (7 e^4\right ) \int \frac {1}{1+x-\log (2-x)} \, dx-\left (14 e^4\right ) \int \frac {1}{(-2+x) (1+x-\log (2-x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 24, normalized size = 0.89 \begin {gather*} 7 \left (x^2+\frac {e^4 x}{-1-x+\log (2-x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 38, normalized size = 1.41 \begin {gather*} \frac {7 \, {\left (x^{3} - x^{2} \log \left (-x + 2\right ) + x^{2} - x e^{4}\right )}}{x - \log \left (-x + 2\right ) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 38, normalized size = 1.41 \begin {gather*} \frac {7 \, {\left (x^{3} - x^{2} \log \left (-x + 2\right ) + x^{2} - x e^{4}\right )}}{x - \log \left (-x + 2\right ) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 25, normalized size = 0.93
method | result | size |
risch | \(7 x^{2}-\frac {7 \,{\mathrm e}^{4} x}{1+x -\ln \left (2-x \right )}\) | \(25\) |
norman | \(\frac {-7 \,{\mathrm e}^{4} \ln \left (2-x \right )+7 x^{2}+7 x^{3}-7 x^{2} \ln \left (2-x \right )+7 \,{\mathrm e}^{4}}{1+x -\ln \left (2-x \right )}\) | \(55\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 38, normalized size = 1.41 \begin {gather*} \frac {7 \, {\left (x^{3} - x^{2} \log \left (-x + 2\right ) + x^{2} - x e^{4}\right )}}{x - \log \left (-x + 2\right ) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.31, size = 45, normalized size = 1.67 \begin {gather*} \frac {7\,\left ({\mathrm {e}}^4-{\mathrm {e}}^4\,\ln \left (2-x\right )+x^2+x^3-x^2\,\ln \left (2-x\right )\right )}{x-\ln \left (2-x\right )+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 19, normalized size = 0.70 \begin {gather*} 7 x^{2} + \frac {7 x e^{4}}{- x + \log {\left (2 - x \right )} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________