Optimal. Leaf size=20 \[ \left (-2 x+e^{3+x} (x+\log (3)) \log ^8(5)\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.18, antiderivative size = 153, normalized size of antiderivative = 7.65, number of steps used = 18, number of rules used = 3, integrand size = 66, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.045, Rules used = {2196, 2176, 2194} \begin {gather*} 4 x^2+e^{2 x+6} x^2 \log ^{16}(5)-4 e^{x+3} x^2 \log ^8(5)+e^{2 x+6} x \log ^{16}(5) (1+\log (9))-e^{2 x+6} x \log ^{16}(5)-\frac {1}{2} e^{2 x+6} \log ^{16}(5) (1+\log (9))+\frac {1}{2} e^{2 x+6} \log ^{16}(5)+4 e^{x+3} \log (3) \log ^8(5)-4 e^{x+3} (x+1) \log (3) \log ^8(5)+\frac {1}{2} e^{2 x+6} \log ^{16}(5) \left (2 \log ^2(3)+\log (9)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=4 x^2+\log ^8(5) \int e^{3+x} \left (-8 x-4 x^2+(-4-4 x) \log (3)\right ) \, dx+\log ^{16}(5) \int e^{6+2 x} \left (2 x+2 x^2+(2+4 x) \log (3)+2 \log ^2(3)\right ) \, dx\\ &=4 x^2+\log ^8(5) \int \left (-8 e^{3+x} x-4 e^{3+x} x^2-4 e^{3+x} (1+x) \log (3)\right ) \, dx+\log ^{16}(5) \int \left (2 e^{6+2 x} x^2+2 e^{6+2 x} x (1+\log (9))+2 e^{6+2 x} \log ^2(3) \left (1+\frac {\log (9)}{2 \log ^2(3)}\right )\right ) \, dx\\ &=4 x^2-\left (4 \log ^8(5)\right ) \int e^{3+x} x^2 \, dx-\left (8 \log ^8(5)\right ) \int e^{3+x} x \, dx-\left (4 \log (3) \log ^8(5)\right ) \int e^{3+x} (1+x) \, dx+\left (2 \log ^{16}(5)\right ) \int e^{6+2 x} x^2 \, dx+\left (2 \log ^{16}(5) (1+\log (9))\right ) \int e^{6+2 x} x \, dx+\left (\log ^{16}(5) \left (2 \log ^2(3)+\log (9)\right )\right ) \int e^{6+2 x} \, dx\\ &=4 x^2-8 e^{3+x} x \log ^8(5)-4 e^{3+x} x^2 \log ^8(5)-4 e^{3+x} (1+x) \log (3) \log ^8(5)+e^{6+2 x} x^2 \log ^{16}(5)+e^{6+2 x} x \log ^{16}(5) (1+\log (9))+\frac {1}{2} e^{6+2 x} \log ^{16}(5) \left (2 \log ^2(3)+\log (9)\right )+\left (8 \log ^8(5)\right ) \int e^{3+x} \, dx+\left (8 \log ^8(5)\right ) \int e^{3+x} x \, dx+\left (4 \log (3) \log ^8(5)\right ) \int e^{3+x} \, dx-\left (2 \log ^{16}(5)\right ) \int e^{6+2 x} x \, dx-\left (\log ^{16}(5) (1+\log (9))\right ) \int e^{6+2 x} \, dx\\ &=4 x^2+8 e^{3+x} \log ^8(5)-4 e^{3+x} x^2 \log ^8(5)+4 e^{3+x} \log (3) \log ^8(5)-4 e^{3+x} (1+x) \log (3) \log ^8(5)-e^{6+2 x} x \log ^{16}(5)+e^{6+2 x} x^2 \log ^{16}(5)-\frac {1}{2} e^{6+2 x} \log ^{16}(5) (1+\log (9))+e^{6+2 x} x \log ^{16}(5) (1+\log (9))+\frac {1}{2} e^{6+2 x} \log ^{16}(5) \left (2 \log ^2(3)+\log (9)\right )-\left (8 \log ^8(5)\right ) \int e^{3+x} \, dx+\log ^{16}(5) \int e^{6+2 x} \, dx\\ &=4 x^2-4 e^{3+x} x^2 \log ^8(5)+4 e^{3+x} \log (3) \log ^8(5)-4 e^{3+x} (1+x) \log (3) \log ^8(5)+\frac {1}{2} e^{6+2 x} \log ^{16}(5)-e^{6+2 x} x \log ^{16}(5)+e^{6+2 x} x^2 \log ^{16}(5)-\frac {1}{2} e^{6+2 x} \log ^{16}(5) (1+\log (9))+e^{6+2 x} x \log ^{16}(5) (1+\log (9))+\frac {1}{2} e^{6+2 x} \log ^{16}(5) \left (2 \log ^2(3)+\log (9)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.12, size = 53, normalized size = 2.65 \begin {gather*} 4 x^2-4 e^{3+x} x (x+\log (3)) \log ^8(5)+\frac {1}{2} e^{6+2 x} \log ^{16}(5) \left (2 x^2+2 \log ^2(3)+x \log (81)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.84, size = 48, normalized size = 2.40 \begin {gather*} {\left (x^{2} + 2 \, x \log \relax (3) + \log \relax (3)^{2}\right )} e^{\left (2 \, x + 6\right )} \log \relax (5)^{16} - 4 \, {\left (x^{2} + x \log \relax (3)\right )} e^{\left (x + 3\right )} \log \relax (5)^{8} + 4 \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.31, size = 48, normalized size = 2.40 \begin {gather*} {\left (x^{2} + 2 \, x \log \relax (3) + \log \relax (3)^{2}\right )} e^{\left (2 \, x + 6\right )} \log \relax (5)^{16} - 4 \, {\left (x^{2} + x \log \relax (3)\right )} e^{\left (x + 3\right )} \log \relax (5)^{8} + 4 \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.08, size = 51, normalized size = 2.55
method | result | size |
risch | \(\ln \relax (5)^{16} \left (\ln \relax (3)^{2}+2 x \ln \relax (3)+x^{2}\right ) {\mathrm e}^{2 x +6}+\ln \relax (5)^{8} \left (-4 x \ln \relax (3)-4 x^{2}\right ) {\mathrm e}^{3+x}+4 x^{2}\) | \(51\) |
default | \(-4 \ln \relax (5)^{8} \ln \relax (3) {\mathrm e}^{3+x} x -4 \ln \relax (5)^{8} {\mathrm e}^{3+x} x^{2}+\ln \relax (5)^{16} \ln \relax (3)^{2} {\mathrm e}^{2 x +6}+2 \ln \relax (5)^{16} \ln \relax (3) {\mathrm e}^{2 x +6} x +\ln \relax (5)^{16} {\mathrm e}^{2 x +6} x^{2}+4 x^{2}\) | \(77\) |
norman | \(-4 \ln \relax (5)^{8} \ln \relax (3) {\mathrm e}^{3+x} x -4 \ln \relax (5)^{8} {\mathrm e}^{3+x} x^{2}+\ln \relax (5)^{16} \ln \relax (3)^{2} {\mathrm e}^{2 x +6}+2 \ln \relax (5)^{16} \ln \relax (3) {\mathrm e}^{2 x +6} x +\ln \relax (5)^{16} {\mathrm e}^{2 x +6} x^{2}+4 x^{2}\) | \(77\) |
derivativedivides | \(-72-24 x -4 \ln \relax (5)^{8} \ln \relax (3) {\mathrm e}^{3+x} \left (3+x \right )-4 \ln \relax (5)^{8} {\mathrm e}^{3+x} \left (3+x \right )^{2}+12 \ln \relax (5)^{8} {\mathrm e}^{3+x} \ln \relax (3)+24 \ln \relax (5)^{8} {\mathrm e}^{3+x} \left (3+x \right )-36 \ln \relax (5)^{8} {\mathrm e}^{3+x}+\ln \relax (5)^{16} \ln \relax (3)^{2} {\mathrm e}^{2 x +6}+2 \ln \relax (5)^{16} \ln \relax (3) {\mathrm e}^{2 x +6} \left (3+x \right )+\ln \relax (5)^{16} {\mathrm e}^{2 x +6} \left (3+x \right )^{2}-6 \ln \relax (5)^{16} {\mathrm e}^{2 x +6} \ln \relax (3)-6 \ln \relax (5)^{16} {\mathrm e}^{2 x +6} \left (3+x \right )+9 \ln \relax (5)^{16} {\mathrm e}^{2 x +6}+4 \left (3+x \right )^{2}\) | \(167\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 96, normalized size = 4.80 \begin {gather*} {\left (x^{2} e^{6} + 2 \, x e^{6} \log \relax (3) + e^{6} \log \relax (3)^{2}\right )} e^{\left (2 \, x\right )} \log \relax (5)^{16} - 4 \, {\left ({\left (x e^{3} - e^{3}\right )} e^{x} \log \relax (3) + {\left (x^{2} e^{3} - 2 \, x e^{3} + 2 \, e^{3}\right )} e^{x} + 2 \, {\left (x e^{3} - e^{3}\right )} e^{x} + e^{\left (x + 3\right )} \log \relax (3)\right )} \log \relax (5)^{8} + 4 \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.22, size = 27, normalized size = 1.35 \begin {gather*} {\left ({\mathrm {e}}^{x+3}\,\ln \relax (3)\,{\ln \relax (5)}^8-2\,x+x\,{\mathrm {e}}^{x+3}\,{\ln \relax (5)}^8\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.19, size = 70, normalized size = 3.50 \begin {gather*} 4 x^{2} + \left (- 4 x^{2} \log {\relax (5 )}^{8} - 4 x \log {\relax (3 )} \log {\relax (5 )}^{8}\right ) e^{x + 3} + \left (x^{2} \log {\relax (5 )}^{16} + 2 x \log {\relax (3 )} \log {\relax (5 )}^{16} + \log {\relax (3 )}^{2} \log {\relax (5 )}^{16}\right ) e^{2 x + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________