Optimal. Leaf size=30 \[ 4+e^{1+\frac {1}{5} e^{15+2 x^2}-x}+\log (4 (2-x)) \]
________________________________________________________________________________________
Rubi [F] time = 0.68, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1+e^{1+\frac {1}{5} e^{15+2 x^2}-x} \left (2-x+\frac {1}{5} e^{15+2 x^2} \left (-8 x+4 x^2\right )\right )}{-2+x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {4}{5} e^{\frac {1}{5} \left (80+e^{15+2 x^2}-5 x+10 x^2\right )} x+\frac {e^{-x} \left (2 e^{1+\frac {1}{5} e^{15+2 x^2}}+e^x-e^{1+\frac {1}{5} e^{15+2 x^2}} x\right )}{-2+x}\right ) \, dx\\ &=\frac {4}{5} \int e^{\frac {1}{5} \left (80+e^{15+2 x^2}-5 x+10 x^2\right )} x \, dx+\int \frac {e^{-x} \left (2 e^{1+\frac {1}{5} e^{15+2 x^2}}+e^x-e^{1+\frac {1}{5} e^{15+2 x^2}} x\right )}{-2+x} \, dx\\ &=\frac {4}{5} \int e^{\frac {1}{5} \left (80+e^{15+2 x^2}-5 x+10 x^2\right )} x \, dx+\int \left (-e^{\frac {1}{5} \left (5+e^{15+2 x^2}-5 x\right )}+\frac {1}{-2+x}\right ) \, dx\\ &=\log (2-x)+\frac {4}{5} \int e^{\frac {1}{5} \left (80+e^{15+2 x^2}-5 x+10 x^2\right )} x \, dx-\int e^{\frac {1}{5} \left (5+e^{15+2 x^2}-5 x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 25, normalized size = 0.83 \begin {gather*} e^{1+\frac {1}{5} e^{15+2 x^2}-x}+\log (-2+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 23, normalized size = 0.77 \begin {gather*} e^{\left (-x + e^{\left (2 \, x^{2} - \log \relax (5) + 15\right )} + 1\right )} + \log \left (x - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (4 \, {\left (x^{2} - 2 \, x\right )} e^{\left (2 \, x^{2} - \log \relax (5) + 15\right )} - x + 2\right )} e^{\left (-x + e^{\left (2 \, x^{2} - \log \relax (5) + 15\right )} + 1\right )} + 1}{x - 2}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.33, size = 22, normalized size = 0.73
method | result | size |
risch | \({\mathrm e}^{\frac {{\mathrm e}^{2 x^{2}+15}}{5}-x +1}+\ln \left (x -2\right )\) | \(22\) |
norman | \({\mathrm e}^{{\mathrm e}^{-\ln \relax (5)+2 x^{2}+15}-x +1}+\ln \left (x -2\right )\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 21, normalized size = 0.70 \begin {gather*} e^{\left (-x + \frac {1}{5} \, e^{\left (2 \, x^{2} + 15\right )} + 1\right )} + \log \left (x - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.15, size = 21, normalized size = 0.70 \begin {gather*} \ln \left (x-2\right )+{\mathrm {e}}^{\frac {{\mathrm {e}}^{15}\,{\mathrm {e}}^{2\,x^2}}{5}-x+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 19, normalized size = 0.63 \begin {gather*} e^{- x + \frac {e^{2 x^{2} + 15}}{5} + 1} + \log {\left (x - 2 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________