Optimal. Leaf size=33 \[ e^{3-\frac {1}{3} x \log \left (-x+\frac {\log (5)}{x \left (5+\log \left (-4+2 x+x^2\right )\right )}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 63.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {1}{3} \left (9-x \log \left (\frac {-5 x^2+\log (5)-x^2 \log \left (-4+2 x+x^2\right )}{5 x+x \log \left (-4+2 x+x^2\right )}\right )\right )\right ) \left (100 x^2-50 x^3-25 x^4+\left (20-12 x-7 x^2\right ) \log (5)+\left (40 x^2-20 x^3-10 x^4+\left (4-2 x-x^2\right ) \log (5)\right ) \log \left (-4+2 x+x^2\right )+\left (4 x^2-2 x^3-x^4\right ) \log ^2\left (-4+2 x+x^2\right )+\left (100 x^2-50 x^3-25 x^4+\left (-20+10 x+5 x^2\right ) \log (5)+\left (40 x^2-20 x^3-10 x^4+\left (-4+2 x+x^2\right ) \log (5)\right ) \log \left (-4+2 x+x^2\right )+\left (4 x^2-2 x^3-x^4\right ) \log ^2\left (-4+2 x+x^2\right )\right ) \log \left (\frac {-5 x^2+\log (5)-x^2 \log \left (-4+2 x+x^2\right )}{5 x+x \log \left (-4+2 x+x^2\right )}\right )\right )}{-300 x^2+150 x^3+75 x^4+\left (60-30 x-15 x^2\right ) \log (5)+\left (-120 x^2+60 x^3+30 x^4+\left (12-6 x-3 x^2\right ) \log (5)\right ) \log \left (-4+2 x+x^2\right )+\left (-12 x^2+6 x^3+3 x^4\right ) \log ^2\left (-4+2 x+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^3 \left (\frac {-5 x^2+\log (5)-x^2 \log \left (-4+2 x+x^2\right )}{x \left (5+\log \left (-4+2 x+x^2\right )\right )}\right )^{-x/3} \left (-100 x^2+50 x^3+25 x^4-\left (20-12 x-7 x^2\right ) \log (5)+\left (-4+2 x+x^2\right ) \left (10 x^2+\log (5)\right ) \log \left (-4+2 x+x^2\right )+x^2 \left (-4+2 x+x^2\right ) \log ^2\left (-4+2 x+x^2\right )+\left (-4+2 x+x^2\right ) \left (5+\log \left (-4+2 x+x^2\right )\right ) \left (5 x^2-\log (5)+x^2 \log \left (-4+2 x+x^2\right )\right ) \log \left (\frac {-5 x^2+\log (5)-x^2 \log \left (-4+2 x+x^2\right )}{x \left (5+\log \left (-4+2 x+x^2\right )\right )}\right )\right )}{3 \left (4-2 x-x^2\right ) \left (5+\log \left (-4+2 x+x^2\right )\right ) \left (5 x^2-\log (5)+x^2 \log \left (-4+2 x+x^2\right )\right )} \, dx\\ &=\frac {1}{3} e^3 \int \frac {\left (\frac {-5 x^2+\log (5)-x^2 \log \left (-4+2 x+x^2\right )}{x \left (5+\log \left (-4+2 x+x^2\right )\right )}\right )^{-x/3} \left (-100 x^2+50 x^3+25 x^4-\left (20-12 x-7 x^2\right ) \log (5)+\left (-4+2 x+x^2\right ) \left (10 x^2+\log (5)\right ) \log \left (-4+2 x+x^2\right )+x^2 \left (-4+2 x+x^2\right ) \log ^2\left (-4+2 x+x^2\right )+\left (-4+2 x+x^2\right ) \left (5+\log \left (-4+2 x+x^2\right )\right ) \left (5 x^2-\log (5)+x^2 \log \left (-4+2 x+x^2\right )\right ) \log \left (\frac {-5 x^2+\log (5)-x^2 \log \left (-4+2 x+x^2\right )}{x \left (5+\log \left (-4+2 x+x^2\right )\right )}\right )\right )}{\left (4-2 x-x^2\right ) \left (5+\log \left (-4+2 x+x^2\right )\right ) \left (5 x^2-\log (5)+x^2 \log \left (-4+2 x+x^2\right )\right )} \, dx\\ &=\frac {1}{3} e^3 \int \left (\frac {100 x^2 \left (\frac {-5 x^2+\log (5)-x^2 \log \left (-4+2 x+x^2\right )}{x \left (5+\log \left (-4+2 x+x^2\right )\right )}\right )^{-x/3}}{\left (-4+2 x+x^2\right ) \left (5+\log \left (-4+2 x+x^2\right )\right ) \left (5 x^2-\log (5)+x^2 \log \left (-4+2 x+x^2\right )\right )}-\frac {50 x^3 \left (\frac {-5 x^2+\log (5)-x^2 \log \left (-4+2 x+x^2\right )}{x \left (5+\log \left (-4+2 x+x^2\right )\right )}\right )^{-x/3}}{\left (-4+2 x+x^2\right ) \left (5+\log \left (-4+2 x+x^2\right )\right ) \left (5 x^2-\log (5)+x^2 \log \left (-4+2 x+x^2\right )\right )}-\frac {25 x^4 \left (\frac {-5 x^2+\log (5)-x^2 \log \left (-4+2 x+x^2\right )}{x \left (5+\log \left (-4+2 x+x^2\right )\right )}\right )^{-x/3}}{\left (-4+2 x+x^2\right ) \left (5+\log \left (-4+2 x+x^2\right )\right ) \left (5 x^2-\log (5)+x^2 \log \left (-4+2 x+x^2\right )\right )}-\frac {\left (-20+12 x+7 x^2\right ) \log (5) \left (\frac {-5 x^2+\log (5)-x^2 \log \left (-4+2 x+x^2\right )}{x \left (5+\log \left (-4+2 x+x^2\right )\right )}\right )^{-x/3}}{\left (-4+2 x+x^2\right ) \left (5+\log \left (-4+2 x+x^2\right )\right ) \left (5 x^2-\log (5)+x^2 \log \left (-4+2 x+x^2\right )\right )}-\frac {\left (10 x^2+\log (5)\right ) \log \left (-4+2 x+x^2\right ) \left (\frac {-5 x^2+\log (5)-x^2 \log \left (-4+2 x+x^2\right )}{x \left (5+\log \left (-4+2 x+x^2\right )\right )}\right )^{-x/3}}{\left (5+\log \left (-4+2 x+x^2\right )\right ) \left (5 x^2-\log (5)+x^2 \log \left (-4+2 x+x^2\right )\right )}-\frac {x^2 \log ^2\left (-4+2 x+x^2\right ) \left (\frac {-5 x^2+\log (5)-x^2 \log \left (-4+2 x+x^2\right )}{x \left (5+\log \left (-4+2 x+x^2\right )\right )}\right )^{-x/3}}{\left (5+\log \left (-4+2 x+x^2\right )\right ) \left (5 x^2-\log (5)+x^2 \log \left (-4+2 x+x^2\right )\right )}-\left (\frac {-5 x^2+\log (5)-x^2 \log \left (-4+2 x+x^2\right )}{x \left (5+\log \left (-4+2 x+x^2\right )\right )}\right )^{-x/3} \log \left (\frac {-5 x^2+\log (5)-x^2 \log \left (-4+2 x+x^2\right )}{x \left (5+\log \left (-4+2 x+x^2\right )\right )}\right )\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 49, normalized size = 1.48 \begin {gather*} e^3 \left (\frac {-5 x^2+\log (5)-x^2 \log \left (-4+2 x+x^2\right )}{x \left (5+\log \left (-4+2 x+x^2\right )\right )}\right )^{-x/3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 49, normalized size = 1.48 \begin {gather*} e^{\left (-\frac {1}{3} \, x \log \left (-\frac {x^{2} \log \left (x^{2} + 2 \, x - 4\right ) + 5 \, x^{2} - \log \relax (5)}{x \log \left (x^{2} + 2 \, x - 4\right ) + 5 \, x}\right ) + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 19.05, size = 81, normalized size = 2.45 \begin {gather*} e^{\left (-\frac {1}{3} \, x \log \left (-\frac {x^{2} \log \left (x^{2} + 2 \, x - 4\right )}{x \log \left (x^{2} + 2 \, x - 4\right ) + 5 \, x} - \frac {5 \, x^{2}}{x \log \left (x^{2} + 2 \, x - 4\right ) + 5 \, x} + \frac {\log \relax (5)}{x \log \left (x^{2} + 2 \, x - 4\right ) + 5 \, x}\right ) + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.99, size = 579, normalized size = 17.55
method | result | size |
risch | \(x^{\frac {x}{3}} \left (\ln \left (x^{2}+2 x -4\right )+5\right )^{\frac {x}{3}} \left (\left (-\ln \left (x^{2}+2 x -4\right )-5\right ) x^{2}+\ln \relax (5)\right )^{-\frac {x}{3}} {\mathrm e}^{3+\frac {i x \pi \mathrm {csgn}\left (\frac {i \left (\left (-\ln \left (x^{2}+2 x -4\right )-5\right ) x^{2}+\ln \relax (5)\right )}{\ln \left (x^{2}+2 x -4\right )+5}\right )^{3}}{6}-\frac {i x \pi \mathrm {csgn}\left (\frac {i \left (\left (-\ln \left (x^{2}+2 x -4\right )-5\right ) x^{2}+\ln \relax (5)\right )}{\ln \left (x^{2}+2 x -4\right )+5}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \left (x^{2}+2 x -4\right )+5}\right )}{6}-\frac {i x \pi \mathrm {csgn}\left (\frac {i \left (\left (-\ln \left (x^{2}+2 x -4\right )-5\right ) x^{2}+\ln \relax (5)\right )}{\ln \left (x^{2}+2 x -4\right )+5}\right )^{2} \mathrm {csgn}\left (i \left (\left (-\ln \left (x^{2}+2 x -4\right )-5\right ) x^{2}+\ln \relax (5)\right )\right )}{6}+\frac {i x \pi \,\mathrm {csgn}\left (\frac {i \left (\left (-\ln \left (x^{2}+2 x -4\right )-5\right ) x^{2}+\ln \relax (5)\right )}{\ln \left (x^{2}+2 x -4\right )+5}\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (x^{2}+2 x -4\right )+5}\right ) \mathrm {csgn}\left (i \left (\left (-\ln \left (x^{2}+2 x -4\right )-5\right ) x^{2}+\ln \relax (5)\right )\right )}{6}-\frac {i x \pi \,\mathrm {csgn}\left (\frac {i \left (\left (-\ln \left (x^{2}+2 x -4\right )-5\right ) x^{2}+\ln \relax (5)\right )}{\ln \left (x^{2}+2 x -4\right )+5}\right ) \mathrm {csgn}\left (\frac {i \left (\left (-\ln \left (x^{2}+2 x -4\right )-5\right ) x^{2}+\ln \relax (5)\right )}{x \left (\ln \left (x^{2}+2 x -4\right )+5\right )}\right )^{2}}{6}+\frac {i x \pi \,\mathrm {csgn}\left (\frac {i \left (\left (-\ln \left (x^{2}+2 x -4\right )-5\right ) x^{2}+\ln \relax (5)\right )}{\ln \left (x^{2}+2 x -4\right )+5}\right ) \mathrm {csgn}\left (\frac {i \left (\left (-\ln \left (x^{2}+2 x -4\right )-5\right ) x^{2}+\ln \relax (5)\right )}{x \left (\ln \left (x^{2}+2 x -4\right )+5\right )}\right ) \mathrm {csgn}\left (\frac {i}{x}\right )}{6}+\frac {i x \pi \mathrm {csgn}\left (\frac {i \left (\left (-\ln \left (x^{2}+2 x -4\right )-5\right ) x^{2}+\ln \relax (5)\right )}{x \left (\ln \left (x^{2}+2 x -4\right )+5\right )}\right )^{3}}{6}-\frac {i x \pi \mathrm {csgn}\left (\frac {i \left (\left (-\ln \left (x^{2}+2 x -4\right )-5\right ) x^{2}+\ln \relax (5)\right )}{x \left (\ln \left (x^{2}+2 x -4\right )+5\right )}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )}{6}}\) | \(579\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.68, size = 46, normalized size = 1.39 \begin {gather*} e^{\left (-\frac {1}{3} \, x \log \left (-x^{2} {\left (\log \left (x^{2} + 2 \, x - 4\right ) + 5\right )} + \log \relax (5)\right ) + \frac {1}{3} \, x \log \relax (x) + \frac {1}{3} \, x \log \left (\log \left (x^{2} + 2 \, x - 4\right ) + 5\right ) + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.37, size = 51, normalized size = 1.55 \begin {gather*} \frac {{\mathrm {e}}^3}{{\left (-\frac {x^2\,\ln \left (x^2+2\,x-4\right )-\ln \relax (5)+5\,x^2}{5\,x+x\,\ln \left (x^2+2\,x-4\right )}\right )}^{x/3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: PolynomialError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________