Optimal. Leaf size=25 \[ x^2+\left (5+2 x+\frac {e^{2 x}}{-5+\log (3)}\right ) \log (\log (x)) \]
________________________________________________________________________________________
Rubi [A] time = 0.78, antiderivative size = 33, normalized size of antiderivative = 1.32, number of steps used = 16, number of rules used = 9, integrand size = 72, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {6, 12, 6742, 2288, 2353, 2298, 2302, 29, 2520} \begin {gather*} x^2+2 x \log (\log (x))-\frac {e^{2 x} \log (\log (x))}{5-\log (3)}+5 \log (\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 29
Rule 2288
Rule 2298
Rule 2302
Rule 2353
Rule 2520
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-25+e^{2 x}-10 x+(5+2 x) \log (3)+\left (-10 x^2+2 x^2 \log (3)\right ) \log (x)+\left (-10 x+2 e^{2 x} x+2 x \log (3)\right ) \log (x) \log (\log (x))}{x (-5+\log (3)) \log (x)} \, dx\\ &=\frac {\int \frac {-25+e^{2 x}-10 x+(5+2 x) \log (3)+\left (-10 x^2+2 x^2 \log (3)\right ) \log (x)+\left (-10 x+2 e^{2 x} x+2 x \log (3)\right ) \log (x) \log (\log (x))}{x \log (x)} \, dx}{-5+\log (3)}\\ &=\frac {\int \left (\frac {e^{2 x} (1+2 x \log (x) \log (\log (x)))}{x \log (x)}+\frac {(-5+\log (3)) \left (5+2 x+2 x^2 \log (x)+2 x \log (x) \log (\log (x))\right )}{x \log (x)}\right ) \, dx}{-5+\log (3)}\\ &=\frac {\int \frac {e^{2 x} (1+2 x \log (x) \log (\log (x)))}{x \log (x)} \, dx}{-5+\log (3)}+\int \frac {5+2 x+2 x^2 \log (x)+2 x \log (x) \log (\log (x))}{x \log (x)} \, dx\\ &=-\frac {e^{2 x} \log (\log (x))}{5-\log (3)}+\int \left (\frac {5+2 x+2 x^2 \log (x)}{x \log (x)}+2 \log (\log (x))\right ) \, dx\\ &=-\frac {e^{2 x} \log (\log (x))}{5-\log (3)}+2 \int \log (\log (x)) \, dx+\int \frac {5+2 x+2 x^2 \log (x)}{x \log (x)} \, dx\\ &=2 x \log (\log (x))-\frac {e^{2 x} \log (\log (x))}{5-\log (3)}-2 \int \frac {1}{\log (x)} \, dx+\int \left (2 x+\frac {5+2 x}{x \log (x)}\right ) \, dx\\ &=x^2+2 x \log (\log (x))-\frac {e^{2 x} \log (\log (x))}{5-\log (3)}-2 \text {li}(x)+\int \frac {5+2 x}{x \log (x)} \, dx\\ &=x^2+2 x \log (\log (x))-\frac {e^{2 x} \log (\log (x))}{5-\log (3)}-2 \text {li}(x)+\int \left (\frac {2}{\log (x)}+\frac {5}{x \log (x)}\right ) \, dx\\ &=x^2+2 x \log (\log (x))-\frac {e^{2 x} \log (\log (x))}{5-\log (3)}-2 \text {li}(x)+2 \int \frac {1}{\log (x)} \, dx+5 \int \frac {1}{x \log (x)} \, dx\\ &=x^2+2 x \log (\log (x))-\frac {e^{2 x} \log (\log (x))}{5-\log (3)}+5 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (x)\right )\\ &=x^2+5 \log (\log (x))+2 x \log (\log (x))-\frac {e^{2 x} \log (\log (x))}{5-\log (3)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 39, normalized size = 1.56 \begin {gather*} \frac {x^2 \left (-5+\frac {\log (9)}{2}\right )+\left (-25+e^{2 x}+x (-10+\log (9))+\log (243)\right ) \log (\log (x))}{-5+\log (3)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 40, normalized size = 1.60 \begin {gather*} \frac {x^{2} \log \relax (3) - 5 \, x^{2} + {\left ({\left (2 \, x + 5\right )} \log \relax (3) - 10 \, x + e^{\left (2 \, x\right )} - 25\right )} \log \left (\log \relax (x)\right )}{\log \relax (3) - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.27, size = 53, normalized size = 2.12 \begin {gather*} \frac {x^{2} \log \relax (3) + 2 \, x \log \relax (3) \log \left (\log \relax (x)\right ) - 5 \, x^{2} - 10 \, x \log \left (\log \relax (x)\right ) + e^{\left (2 \, x\right )} \log \left (\log \relax (x)\right ) + 5 \, \log \relax (3) \log \left (\log \relax (x)\right ) - 25 \, \log \left (\log \relax (x)\right )}{\log \relax (3) - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 33, normalized size = 1.32
method | result | size |
risch | \(\frac {\left (2 x \ln \relax (3)-10 x +{\mathrm e}^{2 x}\right ) \ln \left (\ln \relax (x )\right )}{\ln \relax (3)-5}+x^{2}+5 \ln \left (\ln \relax (x )\right )\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 57, normalized size = 2.28 \begin {gather*} \frac {5 \, \log \relax (3) \log \left (\log \relax (x)\right )}{\log \relax (3) - 5} + \frac {x^{2} {\left (\log \relax (3) - 5\right )} + {\left (2 \, x {\left (\log \relax (3) - 5\right )} + e^{\left (2 \, x\right )}\right )} \log \left (\log \relax (x)\right )}{\log \relax (3) - 5} - \frac {25 \, \log \left (\log \relax (x)\right )}{\log \relax (3) - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {{\mathrm {e}}^{2\,x}-10\,x+\ln \relax (3)\,\left (2\,x+5\right )+\ln \relax (x)\,\left (2\,x^2\,\ln \relax (3)-10\,x^2\right )+\ln \left (\ln \relax (x)\right )\,\ln \relax (x)\,\left (2\,x\,{\mathrm {e}}^{2\,x}-10\,x+2\,x\,\ln \relax (3)\right )-25}{\ln \relax (x)\,\left (5\,x-x\,\ln \relax (3)\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.60, size = 32, normalized size = 1.28 \begin {gather*} x^{2} + 2 x \log {\left (\log {\relax (x )} \right )} + \frac {e^{2 x} \log {\left (\log {\relax (x )} \right )}}{-5 + \log {\relax (3 )}} + 5 \log {\left (\log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________