Optimal. Leaf size=27 \[ e^{-x+x^2+\frac {e^{2 x}}{\log \left (5+\frac {5}{13} x \log (2)\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 10.80, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {e^{2 x}+\left (-x+x^2\right ) \log \left (\frac {1}{13} (65+5 x \log (2))\right )}{\log \left (\frac {1}{13} (65+5 x \log (2))\right )}\right ) \left (-e^{2 x} \log (2)+e^{2 x} (26+2 x \log (2)) \log \left (\frac {1}{13} (65+5 x \log (2))\right )+\left (-13+26 x+\left (-x+2 x^2\right ) \log (2)\right ) \log ^2\left (\frac {1}{13} (65+5 x \log (2))\right )\right )}{(13+x \log (2)) \log ^2\left (\frac {1}{13} (65+5 x \log (2))\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {e^{2 x}+\left (-x+x^2\right ) \log \left (\frac {1}{13} (65+5 x \log (2))\right )}{\log \left (5+\frac {5}{13} x \log (2)\right )}\right ) \left (-e^{2 x} \log (2)+e^{2 x} (26+2 x \log (2)) \log \left (\frac {1}{13} (65+5 x \log (2))\right )+\left (-13+26 x+\left (-x+2 x^2\right ) \log (2)\right ) \log ^2\left (\frac {1}{13} (65+5 x \log (2))\right )\right )}{(13+x \log (2)) \log ^2\left (5+\frac {5}{13} x \log (2)\right )} \, dx\\ &=\int \left (-\exp \left (\frac {e^{2 x}+\left (-x+x^2\right ) \log \left (\frac {1}{13} (65+5 x \log (2))\right )}{\log \left (5+\frac {5}{13} x \log (2)\right )}\right )+2 \exp \left (\frac {e^{2 x}+\left (-x+x^2\right ) \log \left (\frac {1}{13} (65+5 x \log (2))\right )}{\log \left (5+\frac {5}{13} x \log (2)\right )}\right ) x+\frac {\exp \left (2 x+\frac {e^{2 x}+\left (-x+x^2\right ) \log \left (\frac {1}{13} (65+5 x \log (2))\right )}{\log \left (5+\frac {5}{13} x \log (2)\right )}\right ) \left (-\log (2)+26 \log \left (5+\frac {5}{13} x \log (2)\right )+2 x \log (2) \log \left (5+\frac {5}{13} x \log (2)\right )\right )}{(13+x \log (2)) \log ^2\left (5+\frac {5}{13} x \log (2)\right )}\right ) \, dx\\ &=2 \int \exp \left (\frac {e^{2 x}+\left (-x+x^2\right ) \log \left (\frac {1}{13} (65+5 x \log (2))\right )}{\log \left (5+\frac {5}{13} x \log (2)\right )}\right ) x \, dx-\int \exp \left (\frac {e^{2 x}+\left (-x+x^2\right ) \log \left (\frac {1}{13} (65+5 x \log (2))\right )}{\log \left (5+\frac {5}{13} x \log (2)\right )}\right ) \, dx+\int \frac {\exp \left (2 x+\frac {e^{2 x}+\left (-x+x^2\right ) \log \left (\frac {1}{13} (65+5 x \log (2))\right )}{\log \left (5+\frac {5}{13} x \log (2)\right )}\right ) \left (-\log (2)+26 \log \left (5+\frac {5}{13} x \log (2)\right )+2 x \log (2) \log \left (5+\frac {5}{13} x \log (2)\right )\right )}{(13+x \log (2)) \log ^2\left (5+\frac {5}{13} x \log (2)\right )} \, dx\\ &=2 \int e^{(-1+x) x+\frac {e^{2 x}}{\log \left (5+\frac {5}{13} x \log (2)\right )}} x \, dx-\int e^{(-1+x) x+\frac {e^{2 x}}{\log \left (5+\frac {5}{13} x \log (2)\right )}} \, dx+\int \frac {e^{x+x^2+\frac {e^{2 x}}{\log \left (5+\frac {5}{13} x \log (2)\right )}} \left (-\log (2)+2 (13+x \log (2)) \log \left (5+\frac {5}{13} x \log (2)\right )\right )}{(13+x \log (2)) \log ^2\left (5+\frac {5}{13} x \log (2)\right )} \, dx\\ &=2 \int e^{(-1+x) x+\frac {e^{2 x}}{\log \left (5+\frac {5}{13} x \log (2)\right )}} x \, dx-\int e^{(-1+x) x+\frac {e^{2 x}}{\log \left (5+\frac {5}{13} x \log (2)\right )}} \, dx+\int \left (-\frac {e^{x+x^2+\frac {e^{2 x}}{\log \left (5+\frac {5}{13} x \log (2)\right )}} \log (2)}{(13+x \log (2)) \log ^2\left (5+\frac {5}{13} x \log (2)\right )}+\frac {2 e^{x+x^2+\frac {e^{2 x}}{\log \left (5+\frac {5}{13} x \log (2)\right )}}}{\log \left (5+\frac {5}{13} x \log (2)\right )}\right ) \, dx\\ &=2 \int e^{(-1+x) x+\frac {e^{2 x}}{\log \left (5+\frac {5}{13} x \log (2)\right )}} x \, dx+2 \int \frac {e^{x+x^2+\frac {e^{2 x}}{\log \left (5+\frac {5}{13} x \log (2)\right )}}}{\log \left (5+\frac {5}{13} x \log (2)\right )} \, dx-\log (2) \int \frac {e^{x+x^2+\frac {e^{2 x}}{\log \left (5+\frac {5}{13} x \log (2)\right )}}}{(13+x \log (2)) \log ^2\left (5+\frac {5}{13} x \log (2)\right )} \, dx-\int e^{(-1+x) x+\frac {e^{2 x}}{\log \left (5+\frac {5}{13} x \log (2)\right )}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 27, normalized size = 1.00 \begin {gather*} e^{-x+x^2+\frac {e^{2 x}}{\log \left (5+\frac {5}{13} x \log (2)\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 33, normalized size = 1.22 \begin {gather*} e^{\left (\frac {{\left (x^{2} - x\right )} \log \left (\frac {5}{13} \, x \log \relax (2) + 5\right ) + e^{\left (2 \, x\right )}}{\log \left (\frac {5}{13} \, x \log \relax (2) + 5\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 4.32, size = 23, normalized size = 0.85 \begin {gather*} e^{\left (x^{2} - x + \frac {e^{\left (2 \, x\right )}}{\log \left (\frac {5}{13} \, x \log \relax (2) + 5\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.32, size = 41, normalized size = 1.52
method | result | size |
risch | \({\mathrm e}^{\frac {\ln \left (\frac {5 x \ln \relax (2)}{13}+5\right ) x^{2}-\ln \left (\frac {5 x \ln \relax (2)}{13}+5\right ) x +{\mathrm e}^{2 x}}{\ln \left (\frac {5 x \ln \relax (2)}{13}+5\right )}}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.19, size = 25, normalized size = 0.93 \begin {gather*} {\mathrm {e}}^{-x}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{2\,x}}{\ln \left (\frac {5\,x\,\ln \relax (2)}{13}+5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.94, size = 34, normalized size = 1.26 \begin {gather*} e^{\frac {\left (x^{2} - x\right ) \log {\left (\frac {5 x \log {\relax (2 )}}{13} + 5 \right )} + e^{2 x}}{\log {\left (\frac {5 x \log {\relax (2 )}}{13} + 5 \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________