Optimal. Leaf size=19 \[ \left (4+\log \left (\frac {3}{4} e^{-x^3} x^2\right )\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 27, normalized size of antiderivative = 1.42, number of steps used = 5, number of rules used = 2, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {14, 6686} \begin {gather*} -8 x^3+\log ^2\left (\frac {3}{4} e^{-x^3} x^2\right )+16 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 6686
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {8 \left (-2+3 x^3\right )}{x}-\frac {2 \left (-2+3 x^3\right ) \log \left (\frac {3}{4} e^{-x^3} x^2\right )}{x}\right ) \, dx\\ &=-\left (2 \int \frac {\left (-2+3 x^3\right ) \log \left (\frac {3}{4} e^{-x^3} x^2\right )}{x} \, dx\right )-8 \int \frac {-2+3 x^3}{x} \, dx\\ &=\log ^2\left (\frac {3}{4} e^{-x^3} x^2\right )-8 \int \left (-\frac {2}{x}+3 x^2\right ) \, dx\\ &=-8 x^3+16 \log (x)+\log ^2\left (\frac {3}{4} e^{-x^3} x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.03, size = 70, normalized size = 3.68 \begin {gather*} -8 x^3-x^6+16 \log (x)+\log ^2\left (x^2\right )-2 x^3 \log \left (\frac {3}{4} e^{-x^3} x^2\right )+4 \log (x) \left (x^3-\log \left (x^2\right )+\log \left (\frac {3}{4} e^{-x^3} x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.01, size = 29, normalized size = 1.53 \begin {gather*} \log \left (\frac {3}{4} \, x^{2} e^{\left (-x^{3}\right )}\right )^{2} + 8 \, \log \left (\frac {3}{4} \, x^{2} e^{\left (-x^{3}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.52, size = 32, normalized size = 1.68 \begin {gather*} x^{6} - 2 \, x^{3} \log \left (\frac {3}{4} \, x^{2}\right ) - 8 \, x^{3} + \log \left (\frac {3}{4} \, x^{2}\right )^{2} + 16 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 25, normalized size = 1.32
method | result | size |
norman | \(\ln \left (\frac {3 x^{2} {\mathrm e}^{-x^{3}}}{4}\right )^{2}-8 x^{3}+16 \ln \relax (x )\) | \(25\) |
default | \(-8 x^{3}+16 \ln \relax (x )-2 x^{3} \ln \left (\frac {3 x^{2} {\mathrm e}^{-x^{3}}}{4}\right )+4 \ln \relax (x ) \ln \left (\frac {3 x^{2} {\mathrm e}^{-x^{3}}}{4}\right )-x^{6}+4 x^{3} \ln \relax (x )-4 \ln \relax (x )^{2}\) | \(62\) |
risch | \(16 \ln \relax (x )+4 \ln \relax (x )^{2}-x^{6}-8 x^{3}-8 \ln \relax (2) \ln \relax (x )-2 x^{3} \ln \relax (3)+4 \ln \relax (3) \ln \relax (x )+4 x^{3} \ln \relax (2)+i \pi \,x^{3} \mathrm {csgn}\left (i x^{2}\right )^{3}-2 i \pi \,x^{3} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-i \pi \,x^{3} \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{2} {\mathrm e}^{-x^{3}}\right )^{2}-2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i x^{2} {\mathrm e}^{-x^{3}}\right )^{3}-2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+4 i \pi \ln \relax (x ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\left (2 x^{3}-4 \ln \relax (x )\right ) \ln \left ({\mathrm e}^{x^{3}}\right )-i \pi \,x^{3} \mathrm {csgn}\left (i {\mathrm e}^{-x^{3}}\right ) \mathrm {csgn}\left (i x^{2} {\mathrm e}^{-x^{3}}\right )^{2}+i \pi \,x^{3} \mathrm {csgn}\left (i x^{2} {\mathrm e}^{-x^{3}}\right )^{3}+i \pi \,x^{3} \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x^{3}}\right ) \mathrm {csgn}\left (i x^{2} {\mathrm e}^{-x^{3}}\right )+2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{2} {\mathrm e}^{-x^{3}}\right )^{2}-2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x^{3}}\right ) \mathrm {csgn}\left (i x^{2} {\mathrm e}^{-x^{3}}\right )-2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i x^{2}\right )^{3}+i \pi \,x^{3} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i {\mathrm e}^{-x^{3}}\right ) \mathrm {csgn}\left (i x^{2} {\mathrm e}^{-x^{3}}\right )^{2}\) | \(413\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.79, size = 66, normalized size = 3.47 \begin {gather*} -x^{6} - 2 \, x^{3} \log \left (\frac {3}{4} \, x^{2} e^{\left (-x^{3}\right )}\right ) - 8 \, x^{3} + 4 \, {\left (x^{3} - 2 \, \log \relax (x)\right )} \log \relax (x) + 4 \, \log \left (\frac {3}{4} \, x^{2} e^{\left (-x^{3}\right )}\right ) \log \relax (x) + 4 \, \log \relax (x)^{2} + 16 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.67, size = 26, normalized size = 1.37 \begin {gather*} \left (\ln \left (\frac {3\,x^2}{4}\right )-x^3\right )\,\left (\ln \left (\frac {3\,x^2}{4}\right )-x^3+8\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 24, normalized size = 1.26 \begin {gather*} - 8 x^{3} + 16 \log {\relax (x )} + \log {\left (\frac {3 x^{2} e^{- x^{3}}}{4} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________