3.83.28
Optimal. Leaf size=31
________________________________________________________________________________________
Rubi [B] time = 1.93, antiderivative size = 115, normalized size of antiderivative = 3.71,
number of steps used = 39, number of rules used = 18, integrand size = 94, = 0.192, Rules used
= {1594, 27, 12, 6742, 44, 43, 2351, 2314, 31, 2316, 2315, 2295, 2199, 2194, 2177, 2178, 2176,
2554}
Antiderivative was successfully verified.
[In]
Int[(27 - 45*x + 156*x^2 - 28*x^3 + E^(5 - x)*(-27*x^2 + 17*x^3 - 4*x^4) + (30*x^2 - 5*x^3 + E^(5 - x)*(-6*x^2
+ 4*x^3 - x^4))*Log[x])/(27*x - 18*x^2 + 3*x^3),x]
[Out]
4*E^(5 - x) + 60/(3 - x) - (12*E^(5 - x))/(3 - x) - (23*x)/3 + (4*E^(5 - x)*x)/3 + Log[x] + E^(5 - x)*Log[x] -
(3*E^(5 - x)*Log[x])/(3 - x) - (5*x*Log[x])/3 + (E^(5 - x)*x*Log[x])/3 + (5*x*Log[x])/(3 - x)
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 27
Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
Rule 31
Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]
Rule 43
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])
Rule 44
Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] && !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])
Rule 1594
Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^
(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] && PosQ[r - p]
Rule 2176
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] && !$UseGamma === True
Rule 2177
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[((c + d*x)^(m
+ 1)*(b*F^(g*(e + f*x)))^n)/(d*(m + 1)), x] - Dist[(f*g*n*Log[F])/(d*(m + 1)), Int[(c + d*x)^(m + 1)*(b*F^(g*
(e + f*x)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && LtQ[m, -1] && IntegerQ[2*m] && !$UseGamma ===
True
Rule 2178
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] && !$UseGamma === True
Rule 2194
Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]
Rule 2199
Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), w*NormalizePo
werOfLinear[u, x]^m, x], x] /; FreeQ[{F, c}, x] && PolynomialQ[w, x] && LinearQ[v, x] && PowerOfLinearQ[u, x]
&& IntegerQ[m] && !$UseGamma === True
Rule 2295
Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]
Rule 2314
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^(r_.))^(q_), x_Symbol] :> Simp[(x*(d + e*x^r)^(q
+ 1)*(a + b*Log[c*x^n]))/d, x] - Dist[(b*n)/d, Int[(d + e*x^r)^(q + 1), x], x] /; FreeQ[{a, b, c, d, e, n, q,
r}, x] && EqQ[r*(q + 1) + 1, 0]
Rule 2315
Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> -Simp[PolyLog[2, 1 - c*x]/e, x] /; FreeQ[{c, d, e}, x] &
& EqQ[e + c*d, 0]
Rule 2316
Int[((a_.) + Log[(c_.)*(x_)]*(b_.))/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[((a + b*Log[-((c*d)/e)])*Log[d + e*
x])/e, x] + Dist[b, Int[Log[-((e*x)/d)]/(d + e*x), x], x] /; FreeQ[{a, b, c, d, e}, x] && GtQ[-((c*d)/e), 0]
Rule 2351
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> Wit
h[{u = ExpandIntegrand[a + b*Log[c*x^n], (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c,
d, e, f, m, n, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IntegerQ[m] && IntegerQ[r]))
Rule 2554
Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[Log[u], w, x] - Int[SimplifyIntegrand[(w*D[u, x]
)/u, x], x] /; InverseFunctionFreeQ[w, x]] /; InverseFunctionFreeQ[u, x]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.66, size = 62, normalized size = 2.00
Antiderivative was successfully verified.
[In]
Integrate[(27 - 45*x + 156*x^2 - 28*x^3 + E^(5 - x)*(-27*x^2 + 17*x^3 - 4*x^4) + (30*x^2 - 5*x^3 + E^(5 - x)*(
-6*x^2 + 4*x^3 - x^4))*Log[x])/(27*x - 18*x^2 + 3*x^3),x]
[Out]
(4*E^5*x^2 + E^x*(-180 + 69*x - 23*x^2) + (E^5*x^2 + E^x*(-9 + 3*x - 5*x^2))*Log[x])/(3*E^x*(-3 + x))
________________________________________________________________________________________
fricas [A] time = 0.97, size = 51, normalized size = 1.65
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x^4+4*x^3-6*x^2)*exp(5-x)-5*x^3+30*x^2)*log(x)+(-4*x^4+17*x^3-27*x^2)*exp(5-x)-28*x^3+156*x^2-45
*x+27)/(3*x^3-18*x^2+27*x),x, algorithm="fricas")
[Out]
1/3*(4*x^2*e^(-x + 5) - 23*x^2 + (x^2*e^(-x + 5) - 5*x^2 + 3*x - 9)*log(x) + 69*x - 180)/(x - 3)
________________________________________________________________________________________
giac [A] time = 0.16, size = 56, normalized size = 1.81
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x^4+4*x^3-6*x^2)*exp(5-x)-5*x^3+30*x^2)*log(x)+(-4*x^4+17*x^3-27*x^2)*exp(5-x)-28*x^3+156*x^2-45
*x+27)/(3*x^3-18*x^2+27*x),x, algorithm="giac")
[Out]
1/3*(x^2*e^(-x + 5)*log(x) + 4*x^2*e^(-x + 5) - 5*x^2*log(x) - 23*x^2 + 3*x*log(x) + 69*x - 9*log(x) - 180)/(x
- 3)
________________________________________________________________________________________
maple [A] time = 0.12, size = 48, normalized size = 1.55
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
default |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((-x^4+4*x^3-6*x^2)*exp(5-x)-5*x^3+30*x^2)*ln(x)+(-4*x^4+17*x^3-27*x^2)*exp(5-x)-28*x^3+156*x^2-45*x+27)/
(3*x^3-18*x^2+27*x),x,method=_RETURNVERBOSE)
[Out]
(-23/3*x^2+4/3*x^2*exp(5-x)-5/3*x^2*ln(x)+9+1/3*ln(x)*exp(5-x)*x^2)/(x-3)+ln(x)
________________________________________________________________________________________
maxima [B] time = 0.42, size = 64, normalized size = 2.06
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x^4+4*x^3-6*x^2)*exp(5-x)-5*x^3+30*x^2)*log(x)+(-4*x^4+17*x^3-27*x^2)*exp(5-x)-28*x^3+156*x^2-45
*x+27)/(3*x^3-18*x^2+27*x),x, algorithm="maxima")
[Out]
-28/3*x + 1/3*(5*x^2 + (x^2*e^5*log(x) + 4*x^2*e^5)*e^(-x) - 5*(x^2 - 3*x + 9)*log(x) - 15*x)/(x - 3) - 60/(x
- 3) - 4*log(x)
________________________________________________________________________________________
mupad [B] time = 5.10, size = 64, normalized size = 2.06
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(45*x + log(x)*(exp(5 - x)*(6*x^2 - 4*x^3 + x^4) - 30*x^2 + 5*x^3) - 156*x^2 + 28*x^3 + exp(5 - x)*(27*x^
2 - 17*x^3 + 4*x^4) - 27)/(27*x - 18*x^2 + 3*x^3),x)
[Out]
log(x) - (23*x)/3 - 60/(x - 3) + (4*x^2*exp(5 - x))/(3*(x - 3)) - (5*x^2*log(x))/(3*(x - 3)) + (x^2*exp(5 - x)
*log(x))/(3*(x - 3))
________________________________________________________________________________________
sympy [B] time = 0.45, size = 54, normalized size = 1.74
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x**4+4*x**3-6*x**2)*exp(5-x)-5*x**3+30*x**2)*ln(x)+(-4*x**4+17*x**3-27*x**2)*exp(5-x)-28*x**3+15
6*x**2-45*x+27)/(3*x**3-18*x**2+27*x),x)
[Out]
-23*x/3 - 4*log(x) + (x**2*log(x) + 4*x**2)*exp(5 - x)/(3*x - 9) + (-5*x**2 + 15*x - 45)*log(x)/(3*x - 9) - 60
/(x - 3)
________________________________________________________________________________________