Optimal. Leaf size=25 \[ \frac {1}{5} \left (15-e^3\right ) x \left (\frac {e^{5/x}}{x}+x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 33, normalized size of antiderivative = 1.32, number of steps used = 5, number of rules used = 4, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {6, 12, 14, 2209} \begin {gather*} \frac {1}{5} \left (15-e^3\right ) x^2+\frac {1}{5} \left (15-e^3\right ) e^{5/x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 14
Rule 2209
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{5/x} \left (-75+5 e^3\right )+\left (30-2 e^3\right ) x^3}{5 x^2} \, dx\\ &=\frac {1}{5} \int \frac {e^{5/x} \left (-75+5 e^3\right )+\left (30-2 e^3\right ) x^3}{x^2} \, dx\\ &=\frac {1}{5} \int \left (\frac {5 e^{5/x} \left (-15+e^3\right )}{x^2}-2 \left (-15+e^3\right ) x\right ) \, dx\\ &=\frac {1}{5} \left (15-e^3\right ) x^2+\left (-15+e^3\right ) \int \frac {e^{5/x}}{x^2} \, dx\\ &=\frac {1}{5} e^{5/x} \left (15-e^3\right )+\frac {1}{5} \left (15-e^3\right ) x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 24, normalized size = 0.96 \begin {gather*} \frac {1}{5} \left (-15+e^3\right ) \left (-e^{5/x}-x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 25, normalized size = 1.00 \begin {gather*} -\frac {1}{5} \, x^{2} e^{3} + 3 \, x^{2} - \frac {1}{5} \, {\left (e^{3} - 15\right )} e^{\frac {5}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 35, normalized size = 1.40 \begin {gather*} \frac {1}{5} \, x^{2} {\left (\frac {15 \, e^{\frac {5}{x}}}{x^{2}} - \frac {e^{\left (\frac {5}{x} + 3\right )}}{x^{2}} - e^{3} + 15\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 28, normalized size = 1.12
method | result | size |
derivativedivides | \(3 x^{2}-\frac {x^{2} {\mathrm e}^{3}}{5}+\frac {\left (15-{\mathrm e}^{3}\right ) {\mathrm e}^{\frac {5}{x}}}{5}\) | \(28\) |
default | \(3 x^{2}-\frac {x^{2} {\mathrm e}^{3}}{5}+\frac {\left (75-5 \,{\mathrm e}^{3}\right ) {\mathrm e}^{\frac {5}{x}}}{25}\) | \(28\) |
norman | \(\frac {\left (3-\frac {{\mathrm e}^{3}}{5}\right ) x^{3}+\left (3-\frac {{\mathrm e}^{3}}{5}\right ) x \,{\mathrm e}^{\frac {5}{x}}}{x}\) | \(30\) |
risch | \(3 x^{2}-\frac {x^{2} {\mathrm e}^{3}}{5}+3 \,{\mathrm e}^{\frac {5}{x}}-\frac {{\mathrm e}^{\frac {5}{x}} {\mathrm e}^{3}}{5}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 31, normalized size = 1.24 \begin {gather*} -\frac {1}{5} \, x^{2} e^{3} + 3 \, x^{2} + 3 \, e^{\frac {5}{x}} - \frac {1}{5} \, e^{\left (\frac {5}{x} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.10, size = 18, normalized size = 0.72 \begin {gather*} -\left (\frac {{\mathrm {e}}^3}{5}-3\right )\,\left ({\mathrm {e}}^{5/x}+x^2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 20, normalized size = 0.80 \begin {gather*} x^{2} \left (3 - \frac {e^{3}}{5}\right ) + \frac {\left (15 - e^{3}\right ) e^{\frac {5}{x}}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________