Optimal. Leaf size=26 \[ \log \left (7+e^{4-x}-e^{\frac {5 x^2}{4 \log (x)}}+x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 5.25, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-4+4 e^{4-x}\right ) \log ^2(x)+e^{\frac {5 x^2}{4 \log (x)}} (-5 x+10 x \log (x))}{4 e^{\frac {5 x^2}{4 \log (x)}} \log ^2(x)+\left (-28-4 e^{4-x}-4 x\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {5 x (-1+2 \log (x))}{4 \log ^2(x)}+\frac {-5 e^4 x-35 e^x x-5 e^x x^2+10 e^4 x \log (x)+70 e^x x \log (x)+10 e^x x^2 \log (x)+4 e^4 \log ^2(x)-4 e^x \log ^2(x)}{4 \left (-e^4-7 e^x+e^{x+\frac {5 x^2}{4 \log (x)}}-e^x x\right ) \log ^2(x)}\right ) \, dx\\ &=\frac {1}{4} \int \frac {-5 e^4 x-35 e^x x-5 e^x x^2+10 e^4 x \log (x)+70 e^x x \log (x)+10 e^x x^2 \log (x)+4 e^4 \log ^2(x)-4 e^x \log ^2(x)}{\left (-e^4-7 e^x+e^{x+\frac {5 x^2}{4 \log (x)}}-e^x x\right ) \log ^2(x)} \, dx+\frac {5}{4} \int \frac {x (-1+2 \log (x))}{\log ^2(x)} \, dx\\ &=-\frac {5}{2} \text {Ei}(2 \log (x)) (1-2 \log (x))+\frac {5 x^2 (1-2 \log (x))}{4 \log (x)}+\frac {1}{4} \int \left (-\frac {4 e^x}{-e^4-7 e^x+e^{x+\frac {5 x^2}{4 \log (x)}}-e^x x}-\frac {4 e^4}{e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x}+\frac {5 e^4 x}{\left (e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x\right ) \log ^2(x)}+\frac {35 e^x x}{\left (e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x\right ) \log ^2(x)}+\frac {5 e^x x^2}{\left (e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x\right ) \log ^2(x)}-\frac {10 e^4 x}{\left (e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x\right ) \log (x)}-\frac {70 e^x x}{\left (e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x\right ) \log (x)}-\frac {10 e^x x^2}{\left (e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x\right ) \log (x)}\right ) \, dx-\frac {5}{2} \int \left (\frac {2 \text {Ei}(2 \log (x))}{x}-\frac {x}{\log (x)}\right ) \, dx\\ &=-\frac {5}{2} \text {Ei}(2 \log (x)) (1-2 \log (x))+\frac {5 x^2 (1-2 \log (x))}{4 \log (x)}+\frac {5}{4} \int \frac {e^x x^2}{\left (e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x\right ) \log ^2(x)} \, dx+\frac {5}{2} \int \frac {x}{\log (x)} \, dx-\frac {5}{2} \int \frac {e^x x^2}{\left (e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x\right ) \log (x)} \, dx-5 \int \frac {\text {Ei}(2 \log (x))}{x} \, dx+\frac {35}{4} \int \frac {e^x x}{\left (e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x\right ) \log ^2(x)} \, dx-\frac {35}{2} \int \frac {e^x x}{\left (e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x\right ) \log (x)} \, dx-e^4 \int \frac {1}{e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x} \, dx+\frac {1}{4} \left (5 e^4\right ) \int \frac {x}{\left (e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x\right ) \log ^2(x)} \, dx-\frac {1}{2} \left (5 e^4\right ) \int \frac {x}{\left (e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x\right ) \log (x)} \, dx-\int \frac {e^x}{-e^4-7 e^x+e^{x+\frac {5 x^2}{4 \log (x)}}-e^x x} \, dx\\ &=-\frac {5}{2} \text {Ei}(2 \log (x)) (1-2 \log (x))+\frac {5 x^2 (1-2 \log (x))}{4 \log (x)}+\frac {5}{4} \int \frac {e^x x^2}{\left (e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x\right ) \log ^2(x)} \, dx-\frac {5}{2} \int \frac {e^x x^2}{\left (e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x\right ) \log (x)} \, dx+\frac {5}{2} \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )-5 \operatorname {Subst}(\int \text {Ei}(2 x) \, dx,x,\log (x))+\frac {35}{4} \int \frac {e^x x}{\left (e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x\right ) \log ^2(x)} \, dx-\frac {35}{2} \int \frac {e^x x}{\left (e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x\right ) \log (x)} \, dx-e^4 \int \frac {1}{e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x} \, dx+\frac {1}{4} \left (5 e^4\right ) \int \frac {x}{\left (e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x\right ) \log ^2(x)} \, dx-\frac {1}{2} \left (5 e^4\right ) \int \frac {x}{\left (e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x\right ) \log (x)} \, dx-\int \frac {e^x}{-e^4-7 e^x+e^{x+\frac {5 x^2}{4 \log (x)}}-e^x x} \, dx\\ &=\frac {5 x^2}{2}+\frac {5}{2} \text {Ei}(2 \log (x))-\frac {5}{2} \text {Ei}(2 \log (x)) (1-2 \log (x))+\frac {5 x^2 (1-2 \log (x))}{4 \log (x)}-5 \text {Ei}(2 \log (x)) \log (x)+\frac {5}{4} \int \frac {e^x x^2}{\left (e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x\right ) \log ^2(x)} \, dx-\frac {5}{2} \int \frac {e^x x^2}{\left (e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x\right ) \log (x)} \, dx+\frac {35}{4} \int \frac {e^x x}{\left (e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x\right ) \log ^2(x)} \, dx-\frac {35}{2} \int \frac {e^x x}{\left (e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x\right ) \log (x)} \, dx-e^4 \int \frac {1}{e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x} \, dx+\frac {1}{4} \left (5 e^4\right ) \int \frac {x}{\left (e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x\right ) \log ^2(x)} \, dx-\frac {1}{2} \left (5 e^4\right ) \int \frac {x}{\left (e^4+7 e^x-e^{x+\frac {5 x^2}{4 \log (x)}}+e^x x\right ) \log (x)} \, dx-\int \frac {e^x}{-e^4-7 e^x+e^{x+\frac {5 x^2}{4 \log (x)}}-e^x x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 40, normalized size = 1.54 \begin {gather*} \frac {1}{4} \left (-4 x+4 \log \left (-e^4+e^{x+\frac {5 x^2}{4 \log (x)}}-e^x (7+x)\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 24, normalized size = 0.92 \begin {gather*} \log \left (-x - e^{\left (-x + 4\right )} + e^{\left (\frac {5 \, x^{2}}{4 \, \log \relax (x)}\right )} - 7\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 25, normalized size = 0.96
method | result | size |
risch | \(\ln \left ({\mathrm e}^{\frac {5 x^{2}}{4 \ln \relax (x )}}-{\mathrm e}^{-x +4}-x -7\right )\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 30, normalized size = 1.15 \begin {gather*} \log \left (-{\left ({\left (x + 7\right )} e^{x} + e^{4} - e^{\left (x + \frac {5 \, x^{2}}{4 \, \log \relax (x)}\right )}\right )} e^{\left (-x\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.31, size = 22, normalized size = 0.85 \begin {gather*} \ln \left (x+{\mathrm {e}}^{4-x}-{\mathrm {e}}^{\frac {5\,x^2}{4\,\ln \relax (x)}}+7\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.62, size = 20, normalized size = 0.77 \begin {gather*} \log {\left (x - e^{\frac {5 x^{2}}{4 \log {\relax (x )}}} + e^{4 - x} + 7 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________