Optimal. Leaf size=32 \[ \frac {5 \left (e^{5+(-3+x) x}-x\right ) \left (-x^2+\frac {e^x}{\log (5)}\right )}{e^{10}} \]
________________________________________________________________________________________
Rubi [B] time = 0.19, antiderivative size = 79, normalized size of antiderivative = 2.47, number of steps used = 8, number of rules used = 6, integrand size = 63, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {12, 2176, 2194, 6742, 2236, 2288} \begin {gather*} \frac {5 x^3}{e^{10}}-\frac {5 e^{x^2-3 x-5} \left (3 x-2 x^2\right ) x}{3-2 x}+\frac {5 e^{x^2-2 x-5}}{\log (5)}+\frac {5 e^{x-10}}{\log (5)}-\frac {5 e^{x-10} (x+1)}{\log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2236
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (e^x (-5-5 x)+15 x^2 \log (5)+e^{5-3 x+x^2} \left (e^x (-10+10 x)+\left (-10 x+15 x^2-10 x^3\right ) \log (5)\right )\right ) \, dx}{e^{10} \log (5)}\\ &=\frac {5 x^3}{e^{10}}+\frac {\int e^x (-5-5 x) \, dx}{e^{10} \log (5)}+\frac {\int e^{5-3 x+x^2} \left (e^x (-10+10 x)+\left (-10 x+15 x^2-10 x^3\right ) \log (5)\right ) \, dx}{e^{10} \log (5)}\\ &=\frac {5 x^3}{e^{10}}-\frac {5 e^{-10+x} (1+x)}{\log (5)}+\frac {\int \left (10 e^{5-2 x+x^2} (-1+x)-5 e^{5-3 x+x^2} x \left (2-3 x+2 x^2\right ) \log (5)\right ) \, dx}{e^{10} \log (5)}+\frac {5 \int e^x \, dx}{e^{10} \log (5)}\\ &=\frac {5 x^3}{e^{10}}+\frac {5 e^{-10+x}}{\log (5)}-\frac {5 e^{-10+x} (1+x)}{\log (5)}-\frac {5 \int e^{5-3 x+x^2} x \left (2-3 x+2 x^2\right ) \, dx}{e^{10}}+\frac {10 \int e^{5-2 x+x^2} (-1+x) \, dx}{e^{10} \log (5)}\\ &=\frac {5 x^3}{e^{10}}-\frac {5 e^{-5-3 x+x^2} x \left (3 x-2 x^2\right )}{3-2 x}+\frac {5 e^{-10+x}}{\log (5)}+\frac {5 e^{-5-2 x+x^2}}{\log (5)}-\frac {5 e^{-10+x} (1+x)}{\log (5)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 49, normalized size = 1.53 \begin {gather*} \frac {-5 e^x x+5 x^3 \log (5)+5 e^{-3 x+x^2} \left (e^{5+x}-e^5 x^2 \log (5)\right )}{e^{10} \log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 42, normalized size = 1.31 \begin {gather*} \frac {5 \, {\left (x^{3} \log \relax (5) - {\left (x^{2} \log \relax (5) - e^{x}\right )} e^{\left (x^{2} - 3 \, x + 5\right )} - x e^{x}\right )} e^{\left (-10\right )}}{\log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 67, normalized size = 2.09 \begin {gather*} \frac {5 \, {\left (4 \, x^{3} \log \relax (5) - {\left ({\left (2 \, x - 3\right )}^{2} \log \relax (5) + 6 \, {\left (2 \, x - 3\right )} \log \relax (5) + 9 \, \log \relax (5)\right )} e^{\left (x^{2} - 3 \, x + 5\right )} - 4 \, x e^{x} + 4 \, e^{\left (x^{2} - 2 \, x + 5\right )}\right )} e^{\left (-10\right )}}{4 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 46, normalized size = 1.44
method | result | size |
risch | \(5 \,{\mathrm e}^{-10} x^{3}-\frac {5 x \,{\mathrm e}^{x -10}}{\ln \relax (5)}+\frac {\left (-5 x^{2} \ln \relax (5)+5 \,{\mathrm e}^{x}\right ) {\mathrm e}^{x^{2}-3 x -5}}{\ln \relax (5)}\) | \(46\) |
default | \(\frac {{\mathrm e}^{-10} \left (-5 \,{\mathrm e}^{x} x +5 \,{\mathrm e}^{x^{2}-2 x +5}-5 \ln \relax (5) {\mathrm e}^{x^{2}-3 x +5} x^{2}+5 x^{3} \ln \relax (5)\right )}{\ln \relax (5)}\) | \(50\) |
norman | \(5 \,{\mathrm e}^{-10} x^{3}-5 \,{\mathrm e}^{-10} x^{2} {\mathrm e}^{x^{2}-3 x +5}-\frac {5 \,{\mathrm e}^{-10} x \,{\mathrm e}^{x}}{\ln \relax (5)}+\frac {5 \,{\mathrm e}^{-10} {\mathrm e}^{x} {\mathrm e}^{x^{2}-3 x +5}}{\ln \relax (5)}\) | \(63\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 51, normalized size = 1.59 \begin {gather*} \frac {5 \, {\left (x^{3} \log \relax (5) - {\left (x^{2} e^{5} \log \relax (5) - e^{\left (x + 5\right )}\right )} e^{\left (x^{2} - 3 \, x\right )} - {\left (x - 1\right )} e^{x} - e^{x}\right )} e^{\left (-10\right )}}{\log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.24, size = 31, normalized size = 0.97 \begin {gather*} -\frac {5\,{\mathrm {e}}^{-10}\,\left (x-{\mathrm {e}}^{x^2-3\,x+5}\right )\,\left ({\mathrm {e}}^x-x^2\,\ln \relax (5)\right )}{\ln \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 51, normalized size = 1.59 \begin {gather*} \frac {5 x^{3}}{e^{10}} - \frac {5 x e^{x}}{e^{10} \log {\relax (5 )}} + \frac {\left (- 5 x^{2} \log {\relax (5 )} + 5 e^{x}\right ) e^{x^{2} - 3 x + 5}}{e^{10} \log {\relax (5 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________