Optimal. Leaf size=27 \[ x+\frac {-x+\frac {x}{\log \left (x+\left (e+4 x^2\right )^2\right )}}{\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 6.99, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-x-16 e x^2-64 x^4\right ) \log (x)+\left (-e^2-x-8 e x^2-16 x^4+\left (e^2+x+8 e x^2+16 x^4\right ) \log (x)\right ) \log \left (e^2+x+8 e x^2+16 x^4\right )+\left (e^2+x+8 e x^2+16 x^4+\left (-e^2-x-8 e x^2-16 x^4\right ) \log (x)+\left (e^2+x+8 e x^2+16 x^4\right ) \log ^2(x)\right ) \log ^2\left (e^2+x+8 e x^2+16 x^4\right )}{\left (e^2+x+8 e x^2+16 x^4\right ) \log ^2(x) \log ^2\left (e^2+x+8 e x^2+16 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1-\log (x)+\log ^2(x)-\frac {x \left (1+16 e x+64 x^3\right ) \log (x)}{\left (e^2+x+8 e x^2+16 x^4\right ) \log ^2\left (e^2+x+8 e x^2+16 x^4\right )}+\frac {-1+\log (x)}{\log \left (e^2+x+8 e x^2+16 x^4\right )}}{\log ^2(x)} \, dx\\ &=\int \left (\frac {1-\log (x)+\log ^2(x)}{\log ^2(x)}-\frac {x \left (1+16 e x+64 x^3\right )}{\left (e^2+x+8 e x^2+16 x^4\right ) \log (x) \log ^2\left (e^2+x+8 e x^2+16 x^4\right )}+\frac {-1+\log (x)}{\log ^2(x) \log \left (e^2+x+8 e x^2+16 x^4\right )}\right ) \, dx\\ &=\int \frac {1-\log (x)+\log ^2(x)}{\log ^2(x)} \, dx-\int \frac {x \left (1+16 e x+64 x^3\right )}{\left (e^2+x+8 e x^2+16 x^4\right ) \log (x) \log ^2\left (e^2+x+8 e x^2+16 x^4\right )} \, dx+\int \frac {-1+\log (x)}{\log ^2(x) \log \left (e^2+x+8 e x^2+16 x^4\right )} \, dx\\ &=\int \left (1+\frac {1}{\log ^2(x)}-\frac {1}{\log (x)}\right ) \, dx-\int \left (\frac {4}{\log (x) \log ^2\left (e^2+x+8 e x^2+16 x^4\right )}+\frac {-4 e^2-3 x-16 e x^2}{\left (e^2+x+8 e x^2+16 x^4\right ) \log (x) \log ^2\left (e^2+x+8 e x^2+16 x^4\right )}\right ) \, dx+\int \left (-\frac {1}{\log ^2(x) \log \left (e^2+x+8 e x^2+16 x^4\right )}+\frac {1}{\log (x) \log \left (e^2+x+8 e x^2+16 x^4\right )}\right ) \, dx\\ &=x-4 \int \frac {1}{\log (x) \log ^2\left (e^2+x+8 e x^2+16 x^4\right )} \, dx+\int \frac {1}{\log ^2(x)} \, dx-\int \frac {1}{\log (x)} \, dx-\int \frac {-4 e^2-3 x-16 e x^2}{\left (e^2+x+8 e x^2+16 x^4\right ) \log (x) \log ^2\left (e^2+x+8 e x^2+16 x^4\right )} \, dx-\int \frac {1}{\log ^2(x) \log \left (e^2+x+8 e x^2+16 x^4\right )} \, dx+\int \frac {1}{\log (x) \log \left (e^2+x+8 e x^2+16 x^4\right )} \, dx\\ &=x-\frac {x}{\log (x)}-\text {li}(x)-4 \int \frac {1}{\log (x) \log ^2\left (e^2+x+8 e x^2+16 x^4\right )} \, dx+\int \frac {1}{\log (x)} \, dx-\int \left (-\frac {4 e^2}{\left (e^2+x+8 e x^2+16 x^4\right ) \log (x) \log ^2\left (e^2+x+8 e x^2+16 x^4\right )}-\frac {3 x}{\left (e^2+x+8 e x^2+16 x^4\right ) \log (x) \log ^2\left (e^2+x+8 e x^2+16 x^4\right )}-\frac {16 e x^2}{\left (e^2+x+8 e x^2+16 x^4\right ) \log (x) \log ^2\left (e^2+x+8 e x^2+16 x^4\right )}\right ) \, dx-\int \frac {1}{\log ^2(x) \log \left (e^2+x+8 e x^2+16 x^4\right )} \, dx+\int \frac {1}{\log (x) \log \left (e^2+x+8 e x^2+16 x^4\right )} \, dx\\ &=x-\frac {x}{\log (x)}+3 \int \frac {x}{\left (e^2+x+8 e x^2+16 x^4\right ) \log (x) \log ^2\left (e^2+x+8 e x^2+16 x^4\right )} \, dx-4 \int \frac {1}{\log (x) \log ^2\left (e^2+x+8 e x^2+16 x^4\right )} \, dx+(16 e) \int \frac {x^2}{\left (e^2+x+8 e x^2+16 x^4\right ) \log (x) \log ^2\left (e^2+x+8 e x^2+16 x^4\right )} \, dx+\left (4 e^2\right ) \int \frac {1}{\left (e^2+x+8 e x^2+16 x^4\right ) \log (x) \log ^2\left (e^2+x+8 e x^2+16 x^4\right )} \, dx-\int \frac {1}{\log ^2(x) \log \left (e^2+x+8 e x^2+16 x^4\right )} \, dx+\int \frac {1}{\log (x) \log \left (e^2+x+8 e x^2+16 x^4\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 34, normalized size = 1.26 \begin {gather*} x-\frac {x}{\log (x)}+\frac {x}{\log (x) \log \left (e^2+x+8 e x^2+16 x^4\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.37, size = 52, normalized size = 1.93 \begin {gather*} \frac {{\left (x \log \relax (x) - x\right )} \log \left (16 \, x^{4} + 8 \, x^{2} e + x + e^{2}\right ) + x}{\log \left (16 \, x^{4} + 8 \, x^{2} e + x + e^{2}\right ) \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 37, normalized size = 1.37
method | result | size |
risch | \(\frac {x \left (\ln \relax (x )-1\right )}{\ln \relax (x )}+\frac {x}{\ln \relax (x ) \ln \left ({\mathrm e}^{2}+8 x^{2} {\mathrm e}+16 x^{4}+x \right )}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 52, normalized size = 1.93 \begin {gather*} \frac {{\left (x \log \relax (x) - x\right )} \log \left (16 \, x^{4} + 8 \, x^{2} e + x + e^{2}\right ) + x}{\log \left (16 \, x^{4} + 8 \, x^{2} e + x + e^{2}\right ) \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} -\int \frac {\left (\ln \relax (x)\,\left (16\,x^4+8\,\mathrm {e}\,x^2+x+{\mathrm {e}}^2\right )-{\mathrm {e}}^2-x-8\,x^2\,\mathrm {e}-{\ln \relax (x)}^2\,\left (16\,x^4+8\,\mathrm {e}\,x^2+x+{\mathrm {e}}^2\right )-16\,x^4\right )\,{\ln \left (16\,x^4+8\,\mathrm {e}\,x^2+x+{\mathrm {e}}^2\right )}^2+\left (x+{\mathrm {e}}^2-\ln \relax (x)\,\left (16\,x^4+8\,\mathrm {e}\,x^2+x+{\mathrm {e}}^2\right )+8\,x^2\,\mathrm {e}+16\,x^4\right )\,\ln \left (16\,x^4+8\,\mathrm {e}\,x^2+x+{\mathrm {e}}^2\right )+\ln \relax (x)\,\left (64\,x^4+16\,\mathrm {e}\,x^2+x\right )}{{\ln \left (16\,x^4+8\,\mathrm {e}\,x^2+x+{\mathrm {e}}^2\right )}^2\,{\ln \relax (x)}^2\,\left (16\,x^4+8\,\mathrm {e}\,x^2+x+{\mathrm {e}}^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.41, size = 31, normalized size = 1.15 \begin {gather*} x - \frac {x}{\log {\relax (x )}} + \frac {x}{\log {\relax (x )} \log {\left (16 x^{4} + 8 e x^{2} + x + e^{2} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________