Optimal. Leaf size=27 \[ \left (x+\frac {5 \left (2-e^2\right ) x^3}{\left (-e^{x^6}+x\right )^2}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 2.60, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 e^{5 x^6} x-10 e^{4 x^6} x^2-242 x^6+220 e^2 x^6-50 e^4 x^6+e^{3 x^6} \left (100 x^3-240 x^9+e^2 \left (-40 x^3+120 x^9\right )\right )+e^{2 x^6} \left (-220 x^4+480 x^{10}+e^2 \left (100 x^4-240 x^{10}\right )\right )+e^{x^6} \left (770 x^5-2640 x^{11}+e^4 \left (150 x^5-600 x^{11}\right )+e^2 \left (-680 x^5+2520 x^{11}\right )\right )}{e^{5 x^6}-5 e^{4 x^6} x+10 e^{3 x^6} x^2-10 e^{2 x^6} x^3+5 e^{x^6} x^4-x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{5 x^6} x-10 e^{4 x^6} x^2-50 e^4 x^6+\left (-242+220 e^2\right ) x^6+e^{3 x^6} \left (100 x^3-240 x^9+e^2 \left (-40 x^3+120 x^9\right )\right )+e^{2 x^6} \left (-220 x^4+480 x^{10}+e^2 \left (100 x^4-240 x^{10}\right )\right )+e^{x^6} \left (770 x^5-2640 x^{11}+e^4 \left (150 x^5-600 x^{11}\right )+e^2 \left (-680 x^5+2520 x^{11}\right )\right )}{e^{5 x^6}-5 e^{4 x^6} x+10 e^{3 x^6} x^2-10 e^{2 x^6} x^3+5 e^{x^6} x^4-x^5} \, dx\\ &=\int \frac {2 e^{5 x^6} x-10 e^{4 x^6} x^2+\left (-242+220 e^2-50 e^4\right ) x^6+e^{3 x^6} \left (100 x^3-240 x^9+e^2 \left (-40 x^3+120 x^9\right )\right )+e^{2 x^6} \left (-220 x^4+480 x^{10}+e^2 \left (100 x^4-240 x^{10}\right )\right )+e^{x^6} \left (770 x^5-2640 x^{11}+e^4 \left (150 x^5-600 x^{11}\right )+e^2 \left (-680 x^5+2520 x^{11}\right )\right )}{e^{5 x^6}-5 e^{4 x^6} x+10 e^{3 x^6} x^2-10 e^{2 x^6} x^3+5 e^{x^6} x^4-x^5} \, dx\\ &=\int \frac {2 e^{5 x^6} x-10 e^{4 x^6} x^2+\left (-242+220 e^2-50 e^4\right ) x^6+e^{3 x^6} \left (100 x^3-240 x^9+e^2 \left (-40 x^3+120 x^9\right )\right )+e^{2 x^6} \left (-220 x^4+480 x^{10}+e^2 \left (100 x^4-240 x^{10}\right )\right )+e^{x^6} \left (770 x^5-2640 x^{11}+e^4 \left (150 x^5-600 x^{11}\right )+e^2 \left (-680 x^5+2520 x^{11}\right )\right )}{\left (e^{x^6}-x\right )^5} \, dx\\ &=\int \left (2 x+\frac {40 \left (-2+e^2\right ) x^3 \left (-1+3 x^6\right )}{\left (e^{x^6}-x\right )^2}-\frac {150 \left (-2+e^2\right )^2 x^5 \left (-1+4 x^6\right )}{\left (e^{x^6}-x\right )^4}+\frac {20 \left (-2+e^2\right ) x^4 \left (-1+6 x^6\right )}{\left (e^{x^6}-x\right )^3}-\frac {100 \left (-2+e^2\right )^2 x^6 \left (-1+6 x^6\right )}{\left (e^{x^6}-x\right )^5}\right ) \, dx\\ &=x^2-\left (20 \left (2-e^2\right )\right ) \int \frac {x^4 \left (-1+6 x^6\right )}{\left (e^{x^6}-x\right )^3} \, dx-\left (40 \left (2-e^2\right )\right ) \int \frac {x^3 \left (-1+3 x^6\right )}{\left (e^{x^6}-x\right )^2} \, dx-\left (100 \left (2-e^2\right )^2\right ) \int \frac {x^6 \left (-1+6 x^6\right )}{\left (e^{x^6}-x\right )^5} \, dx-\left (150 \left (2-e^2\right )^2\right ) \int \frac {x^5 \left (-1+4 x^6\right )}{\left (e^{x^6}-x\right )^4} \, dx\\ &=x^2-\left (20 \left (2-e^2\right )\right ) \int \left (-\frac {x^4}{\left (e^{x^6}-x\right )^3}+\frac {6 x^{10}}{\left (e^{x^6}-x\right )^3}\right ) \, dx-\left (40 \left (2-e^2\right )\right ) \int \left (-\frac {x^3}{\left (e^{x^6}-x\right )^2}+\frac {3 x^9}{\left (e^{x^6}-x\right )^2}\right ) \, dx-\left (100 \left (2-e^2\right )^2\right ) \int \left (-\frac {x^6}{\left (e^{x^6}-x\right )^5}+\frac {6 x^{12}}{\left (e^{x^6}-x\right )^5}\right ) \, dx-\left (150 \left (2-e^2\right )^2\right ) \int \left (-\frac {x^5}{\left (e^{x^6}-x\right )^4}+\frac {4 x^{11}}{\left (e^{x^6}-x\right )^4}\right ) \, dx\\ &=x^2+\left (20 \left (2-e^2\right )\right ) \int \frac {x^4}{\left (e^{x^6}-x\right )^3} \, dx+\left (40 \left (2-e^2\right )\right ) \int \frac {x^3}{\left (e^{x^6}-x\right )^2} \, dx-\left (120 \left (2-e^2\right )\right ) \int \frac {x^9}{\left (e^{x^6}-x\right )^2} \, dx-\left (120 \left (2-e^2\right )\right ) \int \frac {x^{10}}{\left (e^{x^6}-x\right )^3} \, dx+\left (100 \left (2-e^2\right )^2\right ) \int \frac {x^6}{\left (e^{x^6}-x\right )^5} \, dx+\left (150 \left (2-e^2\right )^2\right ) \int \frac {x^5}{\left (e^{x^6}-x\right )^4} \, dx-\left (600 \left (2-e^2\right )^2\right ) \int \frac {x^{11}}{\left (e^{x^6}-x\right )^4} \, dx-\left (600 \left (2-e^2\right )^2\right ) \int \frac {x^{12}}{\left (e^{x^6}-x\right )^5} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 46, normalized size = 1.70 \begin {gather*} \frac {x^2 \left (e^{2 x^6}-2 e^{x^6} x+11 x^2-5 e^2 x^2\right )^2}{\left (e^{x^6}-x\right )^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.85, size = 123, normalized size = 4.56 \begin {gather*} \frac {25 \, x^{6} e^{4} - 110 \, x^{6} e^{2} + 121 \, x^{6} - 4 \, x^{3} e^{\left (3 \, x^{6}\right )} + x^{2} e^{\left (4 \, x^{6}\right )} - 2 \, {\left (5 \, x^{4} e^{2} - 13 \, x^{4}\right )} e^{\left (2 \, x^{6}\right )} + 4 \, {\left (5 \, x^{5} e^{2} - 11 \, x^{5}\right )} e^{\left (x^{6}\right )}}{x^{4} - 4 \, x^{3} e^{\left (x^{6}\right )} + 6 \, x^{2} e^{\left (2 \, x^{6}\right )} - 4 \, x e^{\left (3 \, x^{6}\right )} + e^{\left (4 \, x^{6}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 127, normalized size = 4.70 \begin {gather*} \frac {25 \, x^{6} e^{4} - 110 \, x^{6} e^{2} + 121 \, x^{6} + 20 \, x^{5} e^{\left (x^{6} + 2\right )} - 44 \, x^{5} e^{\left (x^{6}\right )} + 26 \, x^{4} e^{\left (2 \, x^{6}\right )} - 10 \, x^{4} e^{\left (2 \, x^{6} + 2\right )} - 4 \, x^{3} e^{\left (3 \, x^{6}\right )} + x^{2} e^{\left (4 \, x^{6}\right )}}{x^{4} - 4 \, x^{3} e^{\left (x^{6}\right )} + 6 \, x^{2} e^{\left (2 \, x^{6}\right )} - 4 \, x e^{\left (3 \, x^{6}\right )} + e^{\left (4 \, x^{6}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.06, size = 84, normalized size = 3.11
method | result | size |
risch | \(x^{2}+\frac {5 x^{4} \left (5 x^{2} {\mathrm e}^{4}-22 x^{2} {\mathrm e}^{2}+4 x \,{\mathrm e}^{x^{6}+2}-2 \,{\mathrm e}^{2 \left (x^{2}+1\right ) \left (x^{4}-x^{2}+1\right )}+24 x^{2}-8 x \,{\mathrm e}^{x^{6}}+4 \,{\mathrm e}^{2 x^{6}}\right )}{\left (x -{\mathrm e}^{x^{6}}\right )^{4}}\) | \(84\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.42, size = 110, normalized size = 4.07 \begin {gather*} \frac {x^{6} {\left (25 \, e^{4} - 110 \, e^{2} + 121\right )} + 4 \, x^{5} {\left (5 \, e^{2} - 11\right )} e^{\left (x^{6}\right )} - 2 \, x^{4} {\left (5 \, e^{2} - 13\right )} e^{\left (2 \, x^{6}\right )} - 4 \, x^{3} e^{\left (3 \, x^{6}\right )} + x^{2} e^{\left (4 \, x^{6}\right )}}{x^{4} - 4 \, x^{3} e^{\left (x^{6}\right )} + 6 \, x^{2} e^{\left (2 \, x^{6}\right )} - 4 \, x e^{\left (3 \, x^{6}\right )} + e^{\left (4 \, x^{6}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.72, size = 42, normalized size = 1.56 \begin {gather*} \frac {x^2\,{\left ({\mathrm {e}}^{2\,x^6}-2\,x\,{\mathrm {e}}^{x^6}-5\,x^2\,{\mathrm {e}}^2+11\,x^2\right )}^2}{{\left (x-{\mathrm {e}}^{x^6}\right )}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.29, size = 105, normalized size = 3.89 \begin {gather*} x^{2} + \frac {- 110 x^{6} e^{2} + 120 x^{6} + 25 x^{6} e^{4} + \left (- 40 x^{5} + 20 x^{5} e^{2}\right ) e^{x^{6}} + \left (- 10 x^{4} e^{2} + 20 x^{4}\right ) e^{2 x^{6}}}{x^{4} - 4 x^{3} e^{x^{6}} + 6 x^{2} e^{2 x^{6}} - 4 x e^{3 x^{6}} + e^{4 x^{6}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________