Optimal. Leaf size=29 \[ \frac {1}{9} (x-\log (3))+\frac {5 e^5}{x (1+\log (2)-2 \log (x))} \]
________________________________________________________________________________________
Rubi [A] time = 0.57, antiderivative size = 24, normalized size of antiderivative = 0.83, number of steps used = 12, number of rules used = 7, integrand size = 111, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.063, Rules used = {6, 6688, 12, 6742, 2306, 2309, 2178} \begin {gather*} \frac {x}{9}+\frac {5 e^5}{x (-2 \log (x)+1+\log (2))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2178
Rule 2306
Rule 2309
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {45 e^5+\left (-45 e^5+2 x^2\right ) \log (2)+x^2 \left (1+\log ^2(2)\right )+\left (90 e^5-4 x^2-4 x^2 \log (2)\right ) \log (x)+4 x^2 \log ^2(x)}{9 x^2+18 x^2 \log (2)+9 x^2 \log ^2(2)+\left (-36 x^2-36 x^2 \log (2)\right ) \log (x)+36 x^2 \log ^2(x)} \, dx\\ &=\int \frac {45 e^5+\left (-45 e^5+2 x^2\right ) \log (2)+x^2 \left (1+\log ^2(2)\right )+\left (90 e^5-4 x^2-4 x^2 \log (2)\right ) \log (x)+4 x^2 \log ^2(x)}{9 x^2 \log ^2(2)+x^2 (9+18 \log (2))+\left (-36 x^2-36 x^2 \log (2)\right ) \log (x)+36 x^2 \log ^2(x)} \, dx\\ &=\int \frac {45 e^5+\left (-45 e^5+2 x^2\right ) \log (2)+x^2 \left (1+\log ^2(2)\right )+\left (90 e^5-4 x^2-4 x^2 \log (2)\right ) \log (x)+4 x^2 \log ^2(x)}{x^2 \left (9+18 \log (2)+9 \log ^2(2)\right )+\left (-36 x^2-36 x^2 \log (2)\right ) \log (x)+36 x^2 \log ^2(x)} \, dx\\ &=\int \frac {-45 e^5 (-1+\log (2))+x^2 \left (1+\log ^2(2)+\log (4)\right )+\left (90 e^5-4 x^2 (1+\log (2))\right ) \log (x)+4 x^2 \log ^2(x)}{9 x^2 (1+\log (2)-2 \log (x))^2} \, dx\\ &=\frac {1}{9} \int \frac {-45 e^5 (-1+\log (2))+x^2 \left (1+\log ^2(2)+\log (4)\right )+\left (90 e^5-4 x^2 (1+\log (2))\right ) \log (x)+4 x^2 \log ^2(x)}{x^2 (1+\log (2)-2 \log (x))^2} \, dx\\ &=\frac {1}{9} \int \left (1+\frac {90 e^5}{x^2 (1+\log (2)-2 \log (x))^2}-\frac {45 e^5}{x^2 (1+\log (2)-2 \log (x))}\right ) \, dx\\ &=\frac {x}{9}-\left (5 e^5\right ) \int \frac {1}{x^2 (1+\log (2)-2 \log (x))} \, dx+\left (10 e^5\right ) \int \frac {1}{x^2 (1+\log (2)-2 \log (x))^2} \, dx\\ &=\frac {x}{9}+\frac {5 e^5}{x (1+\log (2)-2 \log (x))}+\left (5 e^5\right ) \int \frac {1}{x^2 (1+\log (2)-2 \log (x))} \, dx-\left (5 e^5\right ) \operatorname {Subst}\left (\int \frac {e^{-x}}{1-2 x+\log (2)} \, dx,x,\log (x)\right )\\ &=\frac {x}{9}+\frac {5 e^{9/2} \text {Ei}\left (\frac {1}{2} (1+\log (2)-2 \log (x))\right )}{2 \sqrt {2}}+\frac {5 e^5}{x (1+\log (2)-2 \log (x))}+\left (5 e^5\right ) \operatorname {Subst}\left (\int \frac {e^{-x}}{1-2 x+\log (2)} \, dx,x,\log (x)\right )\\ &=\frac {x}{9}+\frac {5 e^5}{x (1+\log (2)-2 \log (x))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 38, normalized size = 1.31 \begin {gather*} \frac {90 e^5+x^2 (2+\log (4))-4 x^2 \log (x)}{18 x (1+\log (2)-2 \log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 36, normalized size = 1.24 \begin {gather*} \frac {x^{2} \log \relax (2) - 2 \, x^{2} \log \relax (x) + x^{2} + 45 \, e^{5}}{9 \, {\left (x \log \relax (2) - 2 \, x \log \relax (x) + x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 36, normalized size = 1.24 \begin {gather*} \frac {x^{2} \log \relax (2) - 2 \, x^{2} \log \relax (x) + x^{2} + 45 \, e^{5}}{9 \, {\left (x \log \relax (2) - 2 \, x \log \relax (x) + x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 22, normalized size = 0.76
method | result | size |
risch | \(\frac {x}{9}+\frac {5 \,{\mathrm e}^{5}}{\left (1+\ln \relax (2)-2 \ln \relax (x )\right ) x}\) | \(22\) |
norman | \(\frac {\left (\frac {\ln \relax (2)}{9}+\frac {1}{9}\right ) x^{2}-\frac {2 x^{2} \ln \relax (x )}{9}+5 \,{\mathrm e}^{5}}{x \left (1+\ln \relax (2)-2 \ln \relax (x )\right )}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 36, normalized size = 1.24 \begin {gather*} \frac {x^{2} {\left (\log \relax (2) + 1\right )} - 2 \, x^{2} \log \relax (x) + 45 \, e^{5}}{9 \, {\left (x {\left (\log \relax (2) + 1\right )} - 2 \, x \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {45\,{\mathrm {e}}^5+x^2\,{\ln \relax (2)}^2-\ln \relax (2)\,\left (45\,{\mathrm {e}}^5-2\,x^2\right )-\ln \relax (x)\,\left (4\,x^2\,\ln \relax (2)-90\,{\mathrm {e}}^5+4\,x^2\right )+4\,x^2\,{\ln \relax (x)}^2+x^2}{9\,x^2\,{\ln \relax (2)}^2+36\,x^2\,{\ln \relax (x)}^2-\ln \relax (x)\,\left (36\,x^2\,\ln \relax (2)+36\,x^2\right )+18\,x^2\,\ln \relax (2)+9\,x^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 20, normalized size = 0.69 \begin {gather*} \frac {x}{9} - \frac {5 e^{5}}{2 x \log {\relax (x )} - x - x \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________