Optimal. Leaf size=23 \[ 4+\frac {10 \left (-2+x^2+\frac {x}{e^5+x}\right )^4}{x^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.35, antiderivative size = 133, normalized size of antiderivative = 5.78, number of steps used = 2, number of rules used = 1, integrand size = 206, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.005, Rules used = {2074} \begin {gather*} 10 x^6-40 x^4-40 e^5 x^3+20 \left (3+2 e^{10}\right ) x^2+\frac {160}{x^2}+40 e^5 \left (3-e^{10}\right ) x+\frac {40 \left (8-3 e^{10}-e^{30}\right )}{e^5 \left (x+e^5\right )}+\frac {10 \left (17-12 e^{10}+6 e^{20}\right )}{\left (x+e^5\right )^2}+\frac {20 e^5 \left (3-2 e^{10}\right )}{\left (x+e^5\right )^3}+\frac {10 e^{10}}{\left (x+e^5\right )^4}-\frac {320}{e^5 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-40 e^5 \left (-3+e^{10}\right )-\frac {320}{x^3}+\frac {320}{e^5 x^2}+40 \left (3+2 e^{10}\right ) x-120 e^5 x^2-160 x^3+60 x^5-\frac {40 e^{10}}{\left (e^5+x\right )^5}+\frac {60 e^5 \left (-3+2 e^{10}\right )}{\left (e^5+x\right )^4}-\frac {20 \left (17-12 e^{10}+6 e^{20}\right )}{\left (e^5+x\right )^3}+\frac {40 \left (-8+3 e^{10}+e^{30}\right )}{e^5 \left (e^5+x\right )^2}\right ) \, dx\\ &=\frac {160}{x^2}-\frac {320}{e^5 x}+40 e^5 \left (3-e^{10}\right ) x+20 \left (3+2 e^{10}\right ) x^2-40 e^5 x^3-40 x^4+10 x^6+\frac {10 e^{10}}{\left (e^5+x\right )^4}+\frac {20 e^5 \left (3-2 e^{10}\right )}{\left (e^5+x\right )^3}+\frac {10 \left (17-12 e^{10}+6 e^{20}\right )}{\left (e^5+x\right )^2}+\frac {40 \left (8-3 e^{10}-e^{30}\right )}{e^5 \left (e^5+x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.10, size = 127, normalized size = 5.52 \begin {gather*} 10 \left (\frac {16}{x^2}-\frac {32}{e^5 x}-4 e^5 \left (-3+e^{10}\right ) x+2 \left (3+2 e^{10}\right ) x^2-4 e^5 x^3-4 x^4+x^6+\frac {e^{10}}{\left (e^5+x\right )^4}+\frac {6 e^5-4 e^{15}}{\left (e^5+x\right )^3}+\frac {17-12 e^{10}+6 e^{20}}{\left (e^5+x\right )^2}-\frac {4 \left (-8+3 e^{10}+e^{30}\right )}{e^5 \left (e^5+x\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 201, normalized size = 8.74 \begin {gather*} \frac {10 \, {\left (x^{12} - 4 \, x^{10} + 6 \, x^{8} + x^{4} - 16 \, x^{3} e^{35} - 4 \, x^{2} e^{40} - 6 \, {\left (4 \, x^{4} - x^{2}\right )} e^{30} - 8 \, {\left (2 \, x^{5} - 3 \, x^{3}\right )} e^{25} + {\left (x^{8} - 12 \, x^{6} + 60 \, x^{4} - 28 \, x^{2} + 16\right )} e^{20} + 4 \, {\left (x^{9} - 7 \, x^{7} + 24 \, x^{5} - 16 \, x^{3} + 8 \, x\right )} e^{15} + 6 \, {\left (x^{10} - 6 \, x^{8} + 14 \, x^{6} - 8 \, x^{4} + 4 \, x^{2}\right )} e^{10} + 4 \, {\left (x^{11} - 5 \, x^{9} + 9 \, x^{7} - 3 \, x^{5} + 2 \, x^{3}\right )} e^{5}\right )}}{x^{6} + 4 \, x^{5} e^{5} + 6 \, x^{4} e^{10} + 4 \, x^{3} e^{15} + x^{2} e^{20}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.32, size = 155, normalized size = 6.74
method | result | size |
risch | \(10 x^{6}-40 x \,{\mathrm e}^{15}+40 x^{2} {\mathrm e}^{10}-40 x^{3} {\mathrm e}^{5}-40 x^{4}+120 x \,{\mathrm e}^{5}+60 x^{2}+\frac {\left (-40 \,{\mathrm e}^{25}-120 \,{\mathrm e}^{5}\right ) x^{5}+\left (-120 \,{\mathrm e}^{30}+60 \,{\mathrm e}^{20}-480 \,{\mathrm e}^{10}+10\right ) x^{4}+\left (-120 \,{\mathrm e}^{35}+120 \,{\mathrm e}^{25}-640 \,{\mathrm e}^{15}+80 \,{\mathrm e}^{5}\right ) x^{3}+\left (-40 \,{\mathrm e}^{40}+60 \,{\mathrm e}^{30}-280 \,{\mathrm e}^{20}+240 \,{\mathrm e}^{10}\right ) x^{2}+320 x \,{\mathrm e}^{15}+160 \,{\mathrm e}^{20}}{x^{2} \left ({\mathrm e}^{20}+4 x \,{\mathrm e}^{15}+6 x^{2} {\mathrm e}^{10}+4 x^{3} {\mathrm e}^{5}+x^{4}\right )}\) | \(155\) |
norman | \(\frac {\left (-40+60 \,{\mathrm e}^{10}\right ) x^{10}+\left (-280 \,{\mathrm e}^{15}+360 \,{\mathrm e}^{5}\right ) x^{7}+\left (40 \,{\mathrm e}^{15}-200 \,{\mathrm e}^{5}\right ) x^{9}+80 \,{\mathrm e}^{5} \left (4 \,{\mathrm e}^{30}-39 \,{\mathrm e}^{20}-8 \,{\mathrm e}^{10}+1\right ) x^{3}+\left (10 \,{\mathrm e}^{20}-360 \,{\mathrm e}^{10}+60\right ) x^{8}+\left (320 \,{\mathrm e}^{25}-2400 \,{\mathrm e}^{15}-120 \,{\mathrm e}^{5}\right ) x^{5}+\left (480 \,{\mathrm e}^{30}-4440 \,{\mathrm e}^{20}-480 \,{\mathrm e}^{10}+10\right ) x^{4}+\left (80 \,{\mathrm e}^{40}-780 \,{\mathrm e}^{30}-280 \,{\mathrm e}^{20}+240 \,{\mathrm e}^{10}\right ) x^{2}+10 x^{12}+160 \,{\mathrm e}^{20}+320 x \,{\mathrm e}^{15}+40 \,{\mathrm e}^{5} x^{11}}{x^{2} \left ({\mathrm e}^{5}+x \right )^{4}}\) | \(198\) |
default | \(10 x^{6}-3840 x \,{\mathrm e}^{15}+40 x^{2} {\mathrm e}^{10}-40 x^{3} {\mathrm e}^{5}-40 x^{4}+3800 \,{\mathrm e}^{5} {\mathrm e}^{10} x +120 x \,{\mathrm e}^{5}+60 x^{2}+\frac {160 \,{\mathrm e}^{50} {\mathrm e}^{-50}}{x^{2}}-\frac {320 \,{\mathrm e}^{-50} {\mathrm e}^{45}}{x}-4 \,{\mathrm e}^{-50} \left (\munderset {\textit {\_R} =\RootOf \left ({\mathrm e}^{25}+5 \textit {\_Z} \,{\mathrm e}^{20}+10 \textit {\_Z}^{2} {\mathrm e}^{15}+10 \textit {\_Z}^{3} {\mathrm e}^{10}+5 \textit {\_Z}^{4} {\mathrm e}^{5}+\textit {\_Z}^{5}\right )}{\sum }\frac {\left (2 \left (-3 \,{\mathrm e}^{55}-{\mathrm e}^{75}+8 \,{\mathrm e}^{45}\right ) \textit {\_R}^{3}+\left (65 \,{\mathrm e}^{50}-30 \,{\mathrm e}^{60}+6 \,{\mathrm e}^{70}-6 \,{\mathrm e}^{80}\right ) \textit {\_R}^{2}+\left (-48 \,{\mathrm e}^{65}-6 \,{\mathrm e}^{85}+91 \,{\mathrm e}^{55}+12 \,{\mathrm e}^{75}\right ) \textit {\_R} +44 \,{\mathrm e}^{60}-24 \,{\mathrm e}^{70}+6 \,{\mathrm e}^{80}-2 \,{\mathrm e}^{90}\right ) \ln \left (x -\textit {\_R} \right )}{{\mathrm e}^{20}+4 \textit {\_R} \,{\mathrm e}^{15}+6 \textit {\_R}^{2} {\mathrm e}^{10}+4 \textit {\_R}^{3} {\mathrm e}^{5}+\textit {\_R}^{4}}\right )\) | \(231\) |
gosper | \(\frac {-280 x^{2} {\mathrm e}^{20}+320 x \,{\mathrm e}^{15}+160 \,{\mathrm e}^{20}+10 x^{12}+60 x^{8}-40 x^{10}+10 x^{4}-3120 x^{3} {\mathrm e}^{25}+360 x^{7} {\mathrm e}^{5}-120 x^{5} {\mathrm e}^{5}+80 x^{3} {\mathrm e}^{5}+80 x^{2} {\mathrm e}^{40}-200 \,{\mathrm e}^{5} x^{9}+40 \,{\mathrm e}^{5} x^{11}+10 x^{8} {\mathrm e}^{20}+40 \,{\mathrm e}^{15} x^{9}+60 \,{\mathrm e}^{10} x^{10}+320 \,{\mathrm e}^{35} x^{3}+480 \,{\mathrm e}^{30} x^{4}+320 \,{\mathrm e}^{25} x^{5}-280 \,{\mathrm e}^{15} x^{7}-360 \,{\mathrm e}^{10} x^{8}-780 \,{\mathrm e}^{30} x^{2}-4440 x^{4} {\mathrm e}^{20}-2400 x^{5} {\mathrm e}^{15}+240 x^{2} {\mathrm e}^{10}-640 x^{3} {\mathrm e}^{15}-480 x^{4} {\mathrm e}^{10}}{x^{2} \left ({\mathrm e}^{20}+4 x \,{\mathrm e}^{15}+6 x^{2} {\mathrm e}^{10}+4 x^{3} {\mathrm e}^{5}+x^{4}\right )}\) | \(256\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 158, normalized size = 6.87 \begin {gather*} 10 \, x^{6} - 40 \, x^{4} - 40 \, x^{3} e^{5} + 20 \, x^{2} {\left (2 \, e^{10} + 3\right )} - 40 \, x {\left (e^{15} - 3 \, e^{5}\right )} - \frac {10 \, {\left (4 \, x^{5} {\left (e^{25} + 3 \, e^{5}\right )} + x^{4} {\left (12 \, e^{30} - 6 \, e^{20} + 48 \, e^{10} - 1\right )} + 4 \, x^{3} {\left (3 \, e^{35} - 3 \, e^{25} + 16 \, e^{15} - 2 \, e^{5}\right )} + 2 \, x^{2} {\left (2 \, e^{40} - 3 \, e^{30} + 14 \, e^{20} - 12 \, e^{10}\right )} - 32 \, x e^{15} - 16 \, e^{20}\right )}}{x^{6} + 4 \, x^{5} e^{5} + 6 \, x^{4} e^{10} + 4 \, x^{3} e^{15} + x^{2} e^{20}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.91, size = 268, normalized size = 11.65 \begin {gather*} x^3\,\left (\frac {800\,{\mathrm {e}}^5}{3}-200\,{\mathrm {e}}^{15}+\frac {40\,{\mathrm {e}}^5\,\left (15\,{\mathrm {e}}^{10}-23\right )}{3}\right )+\frac {\left (-120\,{\mathrm {e}}^5-40\,{\mathrm {e}}^{25}\right )\,x^5+\left (60\,{\mathrm {e}}^{20}-480\,{\mathrm {e}}^{10}-120\,{\mathrm {e}}^{30}+10\right )\,x^4+\left (80\,{\mathrm {e}}^5-640\,{\mathrm {e}}^{15}+120\,{\mathrm {e}}^{25}-120\,{\mathrm {e}}^{35}\right )\,x^3+\left (240\,{\mathrm {e}}^{10}-280\,{\mathrm {e}}^{20}+60\,{\mathrm {e}}^{30}-40\,{\mathrm {e}}^{40}\right )\,x^2+320\,{\mathrm {e}}^{15}\,x+160\,{\mathrm {e}}^{20}}{x^6+4\,{\mathrm {e}}^5\,x^5+6\,{\mathrm {e}}^{10}\,x^4+4\,{\mathrm {e}}^{15}\,x^3+{\mathrm {e}}^{20}\,x^2}+x\,\left (1600\,{\mathrm {e}}^{15}-60\,{\mathrm {e}}^{25}+5\,{\mathrm {e}}^5\,\left (520\,{\mathrm {e}}^{10}+5\,{\mathrm {e}}^5\,\left (800\,{\mathrm {e}}^5-600\,{\mathrm {e}}^{15}+40\,{\mathrm {e}}^5\,\left (15\,{\mathrm {e}}^{10}-23\right )\right )-120\right )-10\,{\mathrm {e}}^{10}\,\left (800\,{\mathrm {e}}^5-600\,{\mathrm {e}}^{15}+40\,{\mathrm {e}}^5\,\left (15\,{\mathrm {e}}^{10}-23\right )\right )+20\,{\mathrm {e}}^5\,\left (3\,{\mathrm {e}}^{20}-122\,{\mathrm {e}}^{10}+36\right )\right )-40\,x^4+10\,x^6-x^2\,\left (260\,{\mathrm {e}}^{10}+\frac {5\,{\mathrm {e}}^5\,\left (800\,{\mathrm {e}}^5-600\,{\mathrm {e}}^{15}+40\,{\mathrm {e}}^5\,\left (15\,{\mathrm {e}}^{10}-23\right )\right )}{2}-60\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 3.93, size = 170, normalized size = 7.39 \begin {gather*} 10 x^{6} - 40 x^{4} - 40 x^{3} e^{5} + x^{2} \left (60 + 40 e^{10}\right ) + x \left (- 40 e^{15} + 120 e^{5}\right ) + \frac {x^{5} \left (- 40 e^{25} - 120 e^{5}\right ) + x^{4} \left (- 120 e^{30} - 480 e^{10} + 10 + 60 e^{20}\right ) + x^{3} \left (- 120 e^{35} - 640 e^{15} + 80 e^{5} + 120 e^{25}\right ) + x^{2} \left (- 40 e^{40} - 280 e^{20} + 240 e^{10} + 60 e^{30}\right ) + 320 x e^{15} + 160 e^{20}}{x^{6} + 4 x^{5} e^{5} + 6 x^{4} e^{10} + 4 x^{3} e^{15} + x^{2} e^{20}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________