Optimal. Leaf size=25 \[ 2 \left (\frac {2}{5} \left (3-\frac {e^{4 x}}{x}\right )-\log (5 x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 17, normalized size of antiderivative = 0.68, number of steps used = 4, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {12, 14, 2197} \begin {gather*} -\frac {4 e^{4 x}}{5 x}-2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {e^{4 x} (4-16 x)-10 x}{x^2} \, dx\\ &=\frac {1}{5} \int \left (-\frac {10}{x}-\frac {4 e^{4 x} (-1+4 x)}{x^2}\right ) \, dx\\ &=-2 \log (x)-\frac {4}{5} \int \frac {e^{4 x} (-1+4 x)}{x^2} \, dx\\ &=-\frac {4 e^{4 x}}{5 x}-2 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 19, normalized size = 0.76 \begin {gather*} -\frac {2}{5} \left (\frac {2 e^{4 x}}{x}+5 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 17, normalized size = 0.68 \begin {gather*} -\frac {2 \, {\left (5 \, x \log \relax (x) + 2 \, e^{\left (4 \, x\right )}\right )}}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 17, normalized size = 0.68 \begin {gather*} -\frac {2 \, {\left (5 \, x \log \relax (x) + 2 \, e^{\left (4 \, x\right )}\right )}}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 15, normalized size = 0.60
method | result | size |
norman | \(-\frac {4 \,{\mathrm e}^{4 x}}{5 x}-2 \ln \relax (x )\) | \(15\) |
risch | \(-\frac {4 \,{\mathrm e}^{4 x}}{5 x}-2 \ln \relax (x )\) | \(15\) |
derivativedivides | \(-2 \ln \left (4 x \right )-\frac {4 \,{\mathrm e}^{4 x}}{5 x}\) | \(17\) |
default | \(-2 \ln \left (4 x \right )-\frac {4 \,{\mathrm e}^{4 x}}{5 x}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.39, size = 18, normalized size = 0.72 \begin {gather*} -\frac {16}{5} \, {\rm Ei}\left (4 \, x\right ) + \frac {16}{5} \, \Gamma \left (-1, -4 \, x\right ) - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 14, normalized size = 0.56 \begin {gather*} -2\,\ln \relax (x)-\frac {4\,{\mathrm {e}}^{4\,x}}{5\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 15, normalized size = 0.60 \begin {gather*} - 2 \log {\relax (x )} - \frac {4 e^{4 x}}{5 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________