Optimal. Leaf size=26 \[ e^{\frac {2 \left (e^{2 x}+\left (e^x+x^2\right )^2\right )^2}{\sqrt {e}}} \]
________________________________________________________________________________________
Rubi [B] time = 5.47, antiderivative size = 61, normalized size of antiderivative = 2.35, number of steps used = 3, number of rules used = 3, integrand size = 178, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.017, Rules used = {6688, 12, 6706} \begin {gather*} \exp \left (\frac {1}{2}-\frac {-4 x^8-16 e^x x^6-32 e^{2 x} x^4-32 e^{3 x} x^2-16 e^{4 x}+\sqrt {e}}{2 \sqrt {e}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int 8 \exp \left (\frac {-\sqrt {e}+16 e^{4 x}+32 e^{3 x} x^2+32 e^{2 x} x^4+16 e^x x^6+4 x^8}{2 \sqrt {e}}\right ) \left (4 e^{4 x}+2 x^7+4 e^{2 x} x^3 (2+x)+e^x x^5 (6+x)+2 e^{3 x} x (2+3 x)\right ) \, dx\\ &=8 \int \exp \left (\frac {-\sqrt {e}+16 e^{4 x}+32 e^{3 x} x^2+32 e^{2 x} x^4+16 e^x x^6+4 x^8}{2 \sqrt {e}}\right ) \left (4 e^{4 x}+2 x^7+4 e^{2 x} x^3 (2+x)+e^x x^5 (6+x)+2 e^{3 x} x (2+3 x)\right ) \, dx\\ &=\exp \left (\frac {1}{2}-\frac {\sqrt {e}-16 e^{4 x}-32 e^{3 x} x^2-32 e^{2 x} x^4-16 e^x x^6-4 x^8}{2 \sqrt {e}}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.13, size = 64, normalized size = 2.46 \begin {gather*} e^{8 e^{-\frac {1}{2}+4 x}+16 e^{-\frac {1}{2}+3 x} x^2+16 e^{-\frac {1}{2}+2 x} x^4+8 e^{-\frac {1}{2}+x} x^6+\frac {2 x^8}{\sqrt {e}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.58, size = 48, normalized size = 1.85 \begin {gather*} e^{\left (\frac {1}{2} \, {\left (4 \, x^{8} + 16 \, x^{6} e^{x} + 32 \, x^{4} e^{\left (2 \, x\right )} + 32 \, x^{2} e^{\left (3 \, x\right )} - e^{\frac {1}{2}} + 16 \, e^{\left (4 \, x\right )}\right )} e^{\left (-\frac {1}{2}\right )} + \frac {1}{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 61, normalized size = 2.35 \begin {gather*} e^{\left (2 \, {\left (x^{8} e^{\left (4 \, x - 2\right )} + 4 \, x^{6} e^{\left (5 \, x - 2\right )} + 8 \, x^{4} e^{\left (6 \, x - 2\right )} + 8 \, x^{2} e^{\left (7 \, x - 2\right )} + 4 \, e^{\left (8 \, x - 2\right )}\right )} e^{\left (-4 \, x + \frac {3}{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 41, normalized size = 1.58
method | result | size |
risch | \({\mathrm e}^{2 \left (x^{8}+4 x^{6} {\mathrm e}^{x}+8 \,{\mathrm e}^{2 x} x^{4}+8 x^{2} {\mathrm e}^{3 x}+4 \,{\mathrm e}^{4 x}\right ) {\mathrm e}^{-\frac {1}{2}}}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.62, size = 48, normalized size = 1.85 \begin {gather*} e^{\left (2 \, x^{8} e^{\left (-\frac {1}{2}\right )} + 8 \, x^{6} e^{\left (x - \frac {1}{2}\right )} + 16 \, x^{4} e^{\left (2 \, x - \frac {1}{2}\right )} + 16 \, x^{2} e^{\left (3 \, x - \frac {1}{2}\right )} + 8 \, e^{\left (4 \, x - \frac {1}{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.68, size = 52, normalized size = 2.00 \begin {gather*} {\mathrm {e}}^{2\,x^8\,{\mathrm {e}}^{-\frac {1}{2}}}\,{\mathrm {e}}^{16\,x^2\,{\mathrm {e}}^{3\,x}\,{\mathrm {e}}^{-\frac {1}{2}}}\,{\mathrm {e}}^{16\,x^4\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{-\frac {1}{2}}}\,{\mathrm {e}}^{8\,{\mathrm {e}}^{4\,x}\,{\mathrm {e}}^{-\frac {1}{2}}}\,{\mathrm {e}}^{8\,x^6\,{\mathrm {e}}^{-\frac {1}{2}}\,{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.47, size = 71, normalized size = 2.73 \begin {gather*} e^{\frac {2 x^{8} + 8 x^{6} e^{x} + 12 x^{4} e^{2 x} + 8 x^{2} e^{3 x} + \left (4 x^{4} + 8 x^{2} e^{x} + 4 e^{2 x}\right ) e^{2 x} + 4 e^{4 x}}{e^{\frac {1}{2}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________