Optimal. Leaf size=27 \[ 1+\frac {\log (25)}{4}-\log \left (\log \left (\log \left (\frac {\left (5+e^2+x\right )^2}{(1+x)^2}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.25, antiderivative size = 19, normalized size of antiderivative = 0.70, number of steps used = 3, number of rules used = 3, integrand size = 94, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.032, Rules used = {12, 6688, 6684} \begin {gather*} -\log \left (\log \left (\log \left (\frac {\left (x+e^2+5\right )^2}{(x+1)^2}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6684
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\left (2 \left (4+e^2\right )\right ) \int \frac {1}{\left (5+6 x+x^2+e^2 (1+x)\right ) \log \left (\frac {25+e^4+10 x+x^2+e^2 (10+2 x)}{1+2 x+x^2}\right ) \log \left (\log \left (\frac {25+e^4+10 x+x^2+e^2 (10+2 x)}{1+2 x+x^2}\right )\right )} \, dx\\ &=\left (2 \left (4+e^2\right )\right ) \int \frac {1}{(1+x) \left (5+e^2+x\right ) \log \left (\frac {\left (5+e^2+x\right )^2}{(1+x)^2}\right ) \log \left (\log \left (\frac {\left (5+e^2+x\right )^2}{(1+x)^2}\right )\right )} \, dx\\ &=-\log \left (\log \left (\log \left (\frac {\left (5+e^2+x\right )^2}{(1+x)^2}\right )\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 19, normalized size = 0.70 \begin {gather*} -\log \left (\log \left (\log \left (\frac {\left (5+e^2+x\right )^2}{(1+x)^2}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 33, normalized size = 1.22 \begin {gather*} -\log \left (\log \left (\log \left (\frac {x^{2} + 2 \, {\left (x + 5\right )} e^{2} + 10 \, x + e^{4} + 25}{x^{2} + 2 \, x + 1}\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (e^{2} + 4\right )}}{{\left (x^{2} + {\left (x + 1\right )} e^{2} + 6 \, x + 5\right )} \log \left (\frac {x^{2} + 2 \, {\left (x + 5\right )} e^{2} + 10 \, x + e^{4} + 25}{x^{2} + 2 \, x + 1}\right ) \log \left (\log \left (\frac {x^{2} + 2 \, {\left (x + 5\right )} e^{2} + 10 \, x + e^{4} + 25}{x^{2} + 2 \, x + 1}\right )\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.63, size = 39, normalized size = 1.44
method | result | size |
norman | \(-\ln \left (\ln \left (\ln \left (\frac {{\mathrm e}^{4}+\left (2 x +10\right ) {\mathrm e}^{2}+x^{2}+10 x +25}{x^{2}+2 x +1}\right )\right )\right )\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 20, normalized size = 0.74 \begin {gather*} -\log \left (\log \relax (2) + \log \left (\log \left (x + e^{2} + 5\right ) - \log \left (x + 1\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 30.87, size = 34, normalized size = 1.26 \begin {gather*} -\ln \left (\ln \left (\ln \left (\frac {10\,x+{\mathrm {e}}^4+x^2+{\mathrm {e}}^2\,\left (2\,x+10\right )+25}{x^2+2\,x+1}\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.73, size = 34, normalized size = 1.26 \begin {gather*} - \log {\left (\log {\left (\log {\left (\frac {x^{2} + 10 x + \left (2 x + 10\right ) e^{2} + 25 + e^{4}}{x^{2} + 2 x + 1} \right )} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________