Optimal. Leaf size=26 \[ 8+e+x-\frac {4}{5 \left (e^{6+\left (x-e^3 x\right )^2}+x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.73, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4+5 e^{12+2 x^2-4 e^3 x^2+2 e^6 x^2}+5 x^2+e^{6+x^2-2 e^3 x^2+e^6 x^2} \left (18 x-16 e^3 x+8 e^6 x\right )}{5 e^{12+2 x^2-4 e^3 x^2+2 e^6 x^2}+10 e^{6+x^2-2 e^3 x^2+e^6 x^2} x+5 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 e^{12+2 \left (1+e^6\right ) x^2}+18 e^{6+\left (1+e^3\right )^2 x^2} \left (1+\frac {4}{9} e^3 \left (-2+e^3\right )\right ) x+e^{4 e^3 x^2} \left (4+5 x^2\right )}{5 \left (e^{6+\left (1+e^6\right ) x^2}+e^{2 e^3 x^2} x\right )^2} \, dx\\ &=\frac {1}{5} \int \frac {5 e^{12+2 \left (1+e^6\right ) x^2}+18 e^{6+\left (1+e^3\right )^2 x^2} \left (1+\frac {4}{9} e^3 \left (-2+e^3\right )\right ) x+e^{4 e^3 x^2} \left (4+5 x^2\right )}{\left (e^{6+\left (1+e^6\right ) x^2}+e^{2 e^3 x^2} x\right )^2} \, dx\\ &=\frac {1}{5} \int \left (5-\frac {10 e^{2 e^3 x^2} x}{e^{6+\left (1+e^6\right ) x^2}+e^{2 e^3 x^2} x}+\frac {2 \left (2 e^{4 e^3 x^2}+9 e^{6+\left (1+e^3\right )^2 x^2} \left (1+\frac {4}{9} e^3 \left (-2+e^3\right )\right ) x+5 e^{4 e^3 x^2} x^2\right )}{\left (e^{6+\left (1+e^6\right ) x^2}+e^{2 e^3 x^2} x\right )^2}\right ) \, dx\\ &=x+\frac {2}{5} \int \frac {2 e^{4 e^3 x^2}+9 e^{6+\left (1+e^3\right )^2 x^2} \left (1+\frac {4}{9} e^3 \left (-2+e^3\right )\right ) x+5 e^{4 e^3 x^2} x^2}{\left (e^{6+\left (1+e^6\right ) x^2}+e^{2 e^3 x^2} x\right )^2} \, dx-2 \int \frac {e^{2 e^3 x^2} x}{e^{6+\left (1+e^6\right ) x^2}+e^{2 e^3 x^2} x} \, dx\\ &=x+\frac {2}{5} \int \left (\frac {2 e^{4 e^3 x^2}}{\left (e^{6+\left (1+e^6\right ) x^2}+e^{2 e^3 x^2} x\right )^2}+\frac {e^{6+\left (1+e^3\right )^2 x^2} \left (9-8 e^3+4 e^6\right ) x}{\left (e^{6+\left (1+e^6\right ) x^2}+e^{2 e^3 x^2} x\right )^2}+\frac {5 e^{4 e^3 x^2} x^2}{\left (e^{6+\left (1+e^6\right ) x^2}+e^{2 e^3 x^2} x\right )^2}\right ) \, dx-2 \int \frac {e^{2 e^3 x^2} x}{e^{6+\left (1+e^6\right ) x^2}+e^{2 e^3 x^2} x} \, dx\\ &=x+\frac {4}{5} \int \frac {e^{4 e^3 x^2}}{\left (e^{6+\left (1+e^6\right ) x^2}+e^{2 e^3 x^2} x\right )^2} \, dx+2 \int \frac {e^{4 e^3 x^2} x^2}{\left (e^{6+\left (1+e^6\right ) x^2}+e^{2 e^3 x^2} x\right )^2} \, dx-2 \int \frac {e^{2 e^3 x^2} x}{e^{6+\left (1+e^6\right ) x^2}+e^{2 e^3 x^2} x} \, dx+\frac {1}{5} \left (2 \left (9-8 e^3+4 e^6\right )\right ) \int \frac {e^{6+\left (1+e^3\right )^2 x^2} x}{\left (e^{6+\left (1+e^6\right ) x^2}+e^{2 e^3 x^2} x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 10.04, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {4+5 e^{12+2 x^2-4 e^3 x^2+2 e^6 x^2}+5 x^2+e^{6+x^2-2 e^3 x^2+e^6 x^2} \left (18 x-16 e^3 x+8 e^6 x\right )}{5 e^{12+2 x^2-4 e^3 x^2+2 e^6 x^2}+10 e^{6+x^2-2 e^3 x^2+e^6 x^2} x+5 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.93, size = 54, normalized size = 2.08 \begin {gather*} \frac {5 \, x^{2} + 5 \, x e^{\left (x^{2} e^{6} - 2 \, x^{2} e^{3} + x^{2} + 6\right )} - 4}{5 \, {\left (x + e^{\left (x^{2} e^{6} - 2 \, x^{2} e^{3} + x^{2} + 6\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 28, normalized size = 1.08
method | result | size |
risch | \(x -\frac {4}{5 \left ({\mathrm e}^{x^{2} {\mathrm e}^{6}-2 x^{2} {\mathrm e}^{3}+x^{2}+6}+x \right )}\) | \(28\) |
norman | \(\frac {-\frac {4}{5}+x^{2}+x \,{\mathrm e}^{x^{2} {\mathrm e}^{6}-2 x^{2} {\mathrm e}^{3}+x^{2}+6}}{{\mathrm e}^{x^{2} {\mathrm e}^{6}-2 x^{2} {\mathrm e}^{3}+x^{2}+6}+x}\) | \(55\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 59, normalized size = 2.27 \begin {gather*} \frac {5 \, x e^{\left (x^{2} e^{6} + x^{2} + 6\right )} + {\left (5 \, x^{2} - 4\right )} e^{\left (2 \, x^{2} e^{3}\right )}}{5 \, {\left (x e^{\left (2 \, x^{2} e^{3}\right )} + e^{\left (x^{2} e^{6} + x^{2} + 6\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.74, size = 33, normalized size = 1.27 \begin {gather*} x-\frac {4}{5\,x+5\,{\mathrm {e}}^{-2\,x^2\,{\mathrm {e}}^3}\,{\mathrm {e}}^{x^2\,{\mathrm {e}}^6}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 29, normalized size = 1.12 \begin {gather*} x - \frac {4}{5 x + 5 e^{- 2 x^{2} e^{3} + x^{2} + x^{2} e^{6} + 6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________